摘要:
A microchannel structure including a dispersed-phase introduction channel which communicates with a dispersed-phase introduction inlet; a continuous-phase introduction channel which communicates with a continuous-phase introduction inlet; a discharge channel which communicates with a discharge outlet; a fine-particle formation channel; and a plurality of branch channels for dispersed-phase introduction which are microchannels; wherein one end of the fine-particle formation channel in a fluid traveling direction communicates with the continuous-phase introduction channel whereas the other end thereof communicates with the discharge channel; and wherein a side part of the dispersed-phase introduction channel and side part of the fine-particle formation channel communicate via the plurality of branch channel for dispersed-phase introduction.
摘要:
A microchannel structure including a dispersed-phase introduction channel which communicates with a dispersed-phase introduction inlet; a continuous-phase introduction channel which communicates with a continuous-phase introduction inlet; a discharge channel which communicates with a discharge outlet; a fine-particle formation channel; and a plurality of branch channels for dispersed-phase introduction which are microchannels; wherein one end of the fine-particle formation channel in a fluid traveling direction communicates with the continuous-phase introduction channel whereas the other end thereof communicates with the discharge channel; and wherein a side part of the dispersed-phase introduction channel and side part of the fine-particle formation channel communicate via the plurality of branch channel for dispersed-phase introduction.
摘要:
A method for programming a nonvolatile memory element includes: decreasing a resistance value of a variable resistance element in an initial state, by applying an initialization voltage pulse to a series circuit in which a load resistor having a first resistance value is connected in series with the variable resistance element and a MSM diode; applying, after the decreasing, a write voltage pulse to the series circuit after the resistance value of the variable resistance element is changed to a second resistance value lower than the first resistance value; and applying, after the decreasing, an erase voltage pulse to the series circuit after the resistance value of the variable resistance element is changed to a third resistance value lower than the first resistance value.
摘要:
A III-nitride semiconductor laser device includes a laser structure including a support base, a semiconductor region, and an electrode. The support base includes a hexagonal III-nitride semiconductor and a semipolar primary surface. The semiconductor region includes first and second cladding layers and an active layer arranged along an axis normal to the semipolar primary surface. A c-axis of the hexagonal III-nitride semiconductor is inclined at an angle ALPHA with respect to the normal axis toward an m-axis of the hexagonal III-nitride semiconductor. The laser structure includes first and second fractured faces that intersect with an m-n plane defined by the normal axis and the m-axis of the hexagonal III-nitride semiconductor. A laser cavity of the laser device includes the first and second fractured faces. Each of the first and second fractured faces have a stripe structure on an end face of the support base.
摘要:
A variable resistance nonvolatile storage device which includes (i) a semiconductor substrate (301), (ii) a variable resistance element (309) having: lower and upper electrodes (309a, 309c); and a variable resistance layer (309b) whose resistance value reversibly varies based on voltage signals each of which has a different polarity and is applied between the electrodes (309a, 309c), and (iii) a MOS transistor (317) formed on the substrate (301), wherein the variable resistance layer (309b) includes: oxygen-deficient transition metal oxide layers (309b-1, 309b-2) having compositions MOX and MOy (where x
摘要:
A nonvolatile memory element includes first and second electrodes, and a resistance variable layer disposed therebetween. At least one of the first and second electrodes includes a platinum-containing layer. The resistance variable layer includes a first oxygen-deficient transition metal oxide layer which is not physically in contact with the platinum-containing layer and a second oxygen-deficient transition metal oxide layer which is disposed between the first oxygen-deficient transition metal oxide layer and the platinum-containing layer and is physically in contact with the platinum-containing layer. When oxygen-deficient transition metal oxides included in the first and second oxygen-deficient transition metal oxide layers are expressed as MOx, and MOy, respectively, x
摘要:
A method of fabricating a group-III nitride semiconductor laser device includes: preparing a substrate of a hexagonal group-III nitride semiconductor, where the substrate has a semipolar primary surface; forming a substrate product having a laser structure, an anode electrode and a cathode electrode, where the laser structure includes the substrate and a semiconductor region, and where the semiconductor region is formed on the semipolar primary surface; scribing a first surface of the substrate product in part in a direction of the a-axis of the hexagonal group-III nitride semiconductor; and carrying out breakup of the substrate product by press against a second surface of the substrate product, to form another substrate product and a laser bar.
摘要:
Provided is a group-III nitride semiconductor laser device with a laser cavity enabling a low threshold current, on a semipolar surface of a support base the c-axis of a hexagonal group-III nitride of which tilts toward the m-axis. In a laser structure 13, a first surface 13a is a surface opposite to a second surface 13b and first and second fractured faces 27, 29 extend each from an edge 13c of the first surface 13a to an edge 13d of the second surface 13b. A scribed mark SM1 extending from the edge 13c to the edge 13d is made, for example, at one end of the first fractured face 27, and the scribed mark SM1 or the like has a depressed shape extending from the edge 13c to the edge 13d. The fractured faces 27, 29 are not formed by dry etching and thus are different from the conventional cleaved facets such as c-planes, m-planes, or a-planes. It is feasible to use emission of a band transition enabling a low threshold current.
摘要:
Provided is a group-III nitride semiconductor laser device with a laser cavity enabling a low threshold current, on a semipolar surface of a support base the c-axis of a hexagonal group-III nitride of which tilts toward the m-axis. In a laser structure 13, a first surface 13a is a surface opposite to a second surface 13b and first and second fractured faces 27, 29 extend each from an edge 13c of the first surface 13a to an edge 13d of the second surface 13b. A scribed mark SM1 extending from the edge 13c to the edge 13d is made, for example, at one end of the first fractured face 27, and the scribed mark SM1 or the like has a depressed shape extending from the edge 13c to the edge 13d. The fractured faces 27, 29 are not formed by dry etching and thus are different from the conventional cleaved facets such as c-planes, m-planes, or a-planes. It is feasible to use emission of a band transition enabling a low threshold current.
摘要:
There is provided a system capable of distributing code-compressed data based on audio data on a music composition via the Internet to a mobile telephone so that a user can cut out a desired range from the code-compressed data and register it as a call sound. The system has a data structure of a content frame (3GPP, 3GPP2) containing code-compressed data (AAC) of audio data. The content frame has at least one cut-out position information in the AAC data in its extended function section. A mobile telephone has a content storage unit, a cut-out selection unit to be used by the user to select at least one cut-out position information contained in the extended function section of the content frame, and a data cut-out section for cutting out data from the code-compressed data. The code-compressed data which has been cut out is decompressed when called and the sound is outputted from a loudspeaker.