摘要:
The present disclosure generally relates to methods of electro-chemically forming aluminum or aluminum oxide. The methods may include the optional preparation of a an electrochemical bath, the electrodepositon of aluminum or aluminum oxide onto a substrate, removal of solvent form the surface of the substrate, and post treatment of the substrate having the electrodeposited aluminum or aluminum oxide thereon.
摘要:
A process for generating a compact alumina passivation layer on an aluminum component includes rinsing the component in deionized water for at least one minute, drying it for at least one minute, and exposing it to concentrated nitric acid, at a temperature below 10° C., for one to 30 minutes. The process also includes rinsing the component in deionized water for at least one minute, drying it for at least one minute, and exposing it to NH4OH for one second to one minute. The process further includes rinsing the component in deionized water for at least one minute and drying it for at least one minute. A component for use in a plasma processing system includes an aluminum component coated with an AlxOy film having a thickness of 4 to 8 nm and a surface roughness less than 0.05 μm greater than a surface roughness of the component without the AlxOy film.
摘要:
Described herein are articles, systems and methods where a halogen resistant coating is deposited onto a surface of a chamber component using an atomic layer deposition (ALD) process. The halogen resistant coating has an optional amorphous seed layer and a transition metal-containing layer. The halogen resistant coating uniformly covers features of the chamber component, such as those having an aspect ratio of about 3:1 to about 300:1.
摘要:
In one implementation, a method of depositing a material on a substrate is provided. The method comprises positioning an aluminum-containing substrate in an electroplating solution, the electroplating solution comprising a non-aqueous solvent and a deposition precursor. The method further comprises depositing a coating on the aluminum-containing substrate, the coating comprising aluminum or aluminum oxide. Depositing the coating comprises applying a first current for a first time-period to nucleate a surface of the aluminum-containing substrate and applying a second current for a second time-period, wherein the first current is greater than the second current and the first time-period is less than the second time-period to form the coating on the nucleated surface of the aluminum-containing substrate.
摘要:
A process for generating a compact alumina passivation layer on an aluminum component includes rinsing the component in deionized water for at least one minute, drying it for at least one minute, and exposing it to concentrated nitric acid, at a temperature below 10° C., for one to 30 minutes. The process also includes rinsing the component in deionized water for at least one minute, drying it for at least one minute, and exposing it to NH4OH for one second to one minute. The process further includes rinsing the component in deionized water for at least one minute and drying it for at least one minute. A component for use in a plasma processing system includes an aluminum component coated with an AlxOy film having a thickness of 4 to 8 nm and a surface roughness less than 0.05 μm greater than a surface roughness of the component without the AlxOy film.
摘要翻译:在铝组分上产生紧密的氧化铝钝化层的方法包括在去离子水中冲洗组分至少1分钟,将其干燥至少1分钟,并在低于10℃的温度下将其暴露于浓硝酸。 一到30分钟。 该方法还包括将去离子水中的组分冲洗至少1分钟,将其干燥至少1分钟,并将其暴露于NH 4 OH 1秒至1分钟。 该方法还包括将组分在去离子水中冲洗至少1分钟并将其干燥至少一分钟。 用于等离子体处理系统的部件包括涂覆有厚度为4至8nm的Al x O y膜的铝部件和比没有Al x O y膜的部件的表面粗糙度大于0.05μm的表面粗糙度。