Abstract:
Provided are a thin film transistor, a manufacturing method therefor, an oxide back plate and a display apparatus. The thin film transistor comprises: an oxide active layer (4) and source and drain electrodes (6a, 6b) connected to the oxide active layer (4), wherein the source and drain electrodes (6a, 6b) comprise a main portion (M) and a connective portion (C), the main portion (M) being isolated from the active layer (4), and being electrically connected to the active layer (4) via the connective portion (C), and an electrical resistivity of the connective portion (C) is greater than that of the main portion (M). In the thin film transistor provided above, since the main portions of the source and drain electrodes are not in contact with the oxide active layer, a metal with a relatively high electrical conductivity can be used as the source and drain electrodes, without having a relatively great impact on the electrical performance of the oxide active layer.
Abstract:
A manufacturing method of a light emitting diode device and a light emitting diode device are provided. The manufacturing method of the light emitting diode device includes: forming a light emitting lamination layer on a base substrate, the light emitting lamination layer including a first semiconductor layer, a first light emitting layer, a second semiconductor layer, a second light emitting layer and a third semiconductor layer sequentially formed on the base substrate; dividing the light emitting lamination layer to form a plurality of light emitting units spaced from each other, each light emitting unit including a first area and a second area spaced from each other; and removing the third semiconductor layer and the second light emitting layer in the first area to form a first sub light emitting unit, and the second area being used for forming a second sub light emitting unit.
Abstract:
Embodiments of the present disclosure provide an array substrate and a manufacturing method thereof, and a display device. The array substrate includes a base substrate, a first electrode pattern, a second electrode pattern, and an active layer pattern disposed on the base substrate, a first electrode protection pattern coating the first electrode pattern, and a second electrode protection pattern coating the second electrode pattern. The active layer pattern is disposed between the first electrode pattern and the second electrode pattern. The first electrode protection pattern and the second electrode protection pattern are connected to two sides of the active layer pattern, respectively. The problem that, the active layer pattern cannot be connected to the first electrode pattern and the second electrode pattern due to the surface oxidation, when the first electrode pattern and the second electrode pattern adopt material with low resistance characteristic, is avoided, thus increasing the product yield.
Abstract:
A method of manufacturing a thin-film transistor (TFT) and a TFT are provided. The method of manufacturing the TFT includes, after depositing a semiconductor layer, oxidizing regions of the semiconductor layer corresponding to sputtering target gaps, so that oxygen vacancies at the regions corresponding to the sputtering target gaps can be decreased and oxygen vacancies on the semiconductor layer can be more uniform.
Abstract:
The present invention provides an array substrate and a manufacturing method thereof, a display panel and a display device. The array substrate includes a plurality of pixel units, each of which includes: a TFT area provided with a TFT including a gate, a gate insulation layer, an active area, a source and a drain; and a display area provided with a pixel electrode.
Abstract:
Embodiments of the invention provide a thin film transistor and a manufacturing method thereof and a display device. The thin film transistor includes a gate electrode, a gate insulation layer, an active layer, an ohmic contact layer, a source electrode and a drain electrode, and the source electrode and the drain electrode are connected to the active layer by the ohmic contact layer. The ohmic contact layer is provided at a lateral side of the active layer and contacts the lateral side of the active layer.
Abstract:
Provided is a method for delivering materials, including: acquiring a material delivery model of a target product, wherein the material delivery model includes a delivery route of the target product and a number of delivery times of each of a plurality of logistics transport devices travelling along the delivery route within unit time; generating, for each logistics transport device, delivery instructions within the unit time, based on the number of delivery times, wherein a number of the delivery instructions is equal to the number of delivery times of the corresponding logistics transport device; and sending the delivery instructions to the corresponding logistics transport devices.
Abstract:
A display substrate, a preparation method thereof, and a display apparatus are provide. The display substrate includes: a base substrate, an active layer disposed on the base substrate, a first gate insulating layer disposed on the active layer, a first conductive layer disposed on the first gate insulating layer, and a second conductive layer disposed on the first conductive layer and electrically connected with the first conductive layer; an orthographic projection of the first conductive layer on the base substrate does not overlap with an orthographic projection of the active layer on the base substrate; the second conductive layer includes gates; orthographic projections of the gates on the base substrate and the orthographic projection of the active layer on the base substrate have an overlap area; and the display substrate further includes: at least one insulating layer located between the first conductive layer and the gates.
Abstract:
The present disclosure relates to the technical field of display, and discloses an array substrate, a preparation method therefor, and a display device. When dielectric layers, such as a buffer layer, an interlayer dielectric layer, and a gate insulation layer, are formed between a source-drain electrode and a substrate, the thickness of at least one dielectric layer among said dielectric layers underneath a first through hole for connecting a drain electrode and an anode is increased, which is to say that the drain electrode is raised to be further away from the substrate, causing the drain electrode to be closer to a surface of a planarization layer that faces away from the substrate, i.e., reducing the thickness of a portion of the planarization layer above the drain electrode.
Abstract:
A photoresist composition and manufacturing method thereof, a manufacturing method of a metal pattern, and a manufacturing method of an array substrate are provided. The photoresist composition includes a base material and an ion adsorbent, and the ion adsorbent is chelating resin.