Abstract:
The present invention relates to an apparatus for spraying an etchant and a method for manufacturing a printed circuit board. In one exemplary embodiment the apparatus includes a manifold, a plurality of feed pipes in fluid communication with the manifold, each of the feed pipes having a plurality of spray nozzles mounted thereon, the feed pipes cooperatively constitute a spray region, and a pressure-boosting device configured for increasing a spray pressure of the spray nozzles which are located at a central area of the spray region. The apparatus can overcome “the puddle effect” on an upper surface of the printed circuit board.
Abstract:
A bifunctional compound with a monosaccharide and a N2S2 ligand, and more particularly, a bifunctional compound with a N2S2 ligand and aminohexylacetyl galactosamine (ah-GalNAc4) is provided. A method for preparing the bifunctional compound with a monosaccharide and a N2S2 ligand is also provided, including activating a carboxyl group in an organic ligand, reacting the activated carboxyl group with a galactopyranoside through amidation, and then hydrolyzing. The bifunctional compound of the present invention is widely useful in nuclear medicine for preparation of liver imaging agents for assisting in correct diagnosis of diseases.
Abstract translation:提供了具有单糖和N2S2配体的双官能化合物,更具体地,提供了具有N 2 S 2配体和氨基己基乙酰基半乳糖胺(ah-GalNAc 4)的双官能化合物。 还提供了用单糖和N 2 S 2配体制备双功能化合物的方法,包括活化有机配体中的羧基,通过酰胺化使活化的羧基与吡喃半乳糖苷反应,然后水解。 本发明的双功能化合物在制备用于辅助正确诊断疾病的肝成像剂的核医学中广泛有用。
Abstract:
A method for preparation of N-methyl-3-(2-tributylstannylphenoxy)-3-phenylpropanamine is provided, which includes formation of N-methyl-3-(2-tributylstannylphenoxy)-3-phenylpropanamine, useful as a precursor of a norepinephrine transporter (NET) contrast label [123Iodine](R)—N-methyl-3-(2-iodophenoxy)-3-phenylpropanamine ([123I]MIPP) with a leaving group Bu3Sn.
Abstract:
An exemplary inner substrate for manufacturing multilayer printed circuit boards is provided. The inner substrate has a number of substrate units and a number of transverse folding portions alternately arranged along a longitudinal direction of the inner substrate. Each of the substrate units is configured for forming a unitary printed circuit board. Each of the folding portions is interconnected between neighboring substrate units. Each of the folding portions defines at least one line weakness perpendicular to the longitudinal direction of the inner substrate for facilitating folding and unfolding the neighboring substrate units to each other. An exemplary method for manufacturing multilayer printed circuit boards using the inner substrate is also provided. The method can improve efficiency of manufacturing multilayer printed circuit boards.
Abstract:
An apparatus for recycling metals from metal ions containing waste solution includes a conveying device, a reducing agent supplier and a solution supplier. The conveying device includes a first ferromagnetic conveyor belt, a first roller, and a second roller. The first and second rollers are substantially horizontally arranged, and the second roller is arranged at a lower position relative to the first roller and spaced from the first roller. The ferromagnetic conveyor belt is wrapped around the first and second rollers. The reducing agent supplier is used for supplying a reducing agent onto the first conveyor belt, the ferromagnetic conveyor belt is capable of conveying the reducing agent from the second roller to the first roller. The solution supplier is configured for supplying the waste solution onto the first conveyor belt.
Abstract:
An exemplary ink for forming electrical traces includes an aqueous carrier medium, a palladium salt and a reducing agent. The palladium salt is capable of being dissolved in the aqueous carrier medium. The reducing agent is configured for reducing the palladium ions into palladium particles under an irradiation ray.
Abstract:
An exemplary method of welding electronic components on PCBs is disclosed. Firstly, a metal tray including a number of supporting areas is provided. At least one through hole is formed in each of the supporting areas. Secondly, solder pastes are applied onto welding pads of PCBs. Thirdly, electronic components are mounted on the welding pads. Fourthly, PCBs are placed on the metal tray in a manner that each printed circuit board is placed in a corresponding supporting area and the welding pads being above the through hole. Finally, the solder pastes are heated to weld the electronic components on the printed circuit board. By doing so, the heat can pass through the through holes in each supporting area directly and fully melt the solder paste. As a result, welding defects can be reduced.
Abstract:
A method for manufacturing a multilayer FPCB includes the steps of: providing a first copper clad laminate, a second copper clad laminate and a binder layer; defining an opening on the binder layer; defining a first slit on the first copper clad laminate; laminating the first copper clad laminate, the binder layer and the second copper clad laminate; defining a via hole for establishing electric connection between the first copper clad laminate and the second copper clad laminate; cutting the first copper clad laminate, the binder layer and the second copper clad laminate thereby forming a multilayer flexible printed circuit board having different numbers of layers in different areas.
Abstract:
An exemplary inner substrate for manufacturing multilayer printed circuit boards is provided. The inner substrate has a number of substrate units and a number of transverse folding portions alternately arranged along a longitudinal direction of the inner substrate. Each of the substrate units is configured for forming a unitary printed circuit board. Each of the folding portions is interconnected between neighboring substrate units. Each of the folding portions defines at least one line of weakness perpendicular to the longitudinal direction of the inner substrate for facilitating folding and unfolding the neighboring substrate units to each other. Each of the folding portions defines at least one groove in at least one side thereof along the at least one line of weakness.
Abstract:
A circuit substrate for mounting electronic components includes a metal base layer, an electrically conductive layer having electrically conductive traces, and a composite layer disposed between the metal base layer and the electrically conductive layer. The composite layer includes a polymer matrix and a number of carbon nanotubes embedded in the polymer matrix. The composite layer has a first surface in contact with the metal substrate and an opposite second surface. Each of the carbon nanotubes extends from the first surface to the second surface inclined at an angle of from 80° to 100° relative to the first surface.