摘要:
A device includes a semiconductor substrate of a first conductivity type, wherein the semiconductor substrate comprises a first surface and a second surface opposite the first surface. A through-substrate via (TSV) extends from the first surface to the second surface of the semiconductor substrate. A well region of a second conductivity type opposite the first conductivity type encircles the TSV, and extends from the first surface to the second surface of the semiconductor substrate.
摘要:
In accordance with an embodiment, a semiconductor device comprises a semiconductor die, an interposer, and conductive bumps bonding the semiconductor die to the interposer. The semiconductor die comprises a first metallization layer, and the first metallization layer comprises a first conductive pattern. The interposer comprises a second metallization layer, and the second metallization layer comprises a second conductive pattern. Some of the conductive bumps electrically couple the first conductive pattern to the second conductive pattern to form a coil. Other embodiments contemplate other configurations of coils, inductors, and/or transformers, and contemplate methods of manufacture.
摘要:
Some embodiments relate to a semiconductor module comprising an integrated antenna structure configured to wirelessly transmit signals. The integrated antenna structure has a lower metal layer and an upper metal layer. The lower metal layer is disposed on a lower die and is connected to a ground terminal. The upper metal layer is disposed on an upper die and is connected to a signal generator configured to generate a signal to be wirelessly transmitted. The upper die is stacked on the lower die and is connected to the lower die by way of an adhesion layer having one or more micro-bumps. By connecting the lower and upper die together by way of the adhesion layer, the lower and upper metal layers are separated from each other by a large spacing that provides for a good performance of the integrated antenna structure.
摘要:
An electronic device comprises first, second and third inductors connected in series and formed in a metal layer over a semiconductor substrate. The first and second inductors have a mutual inductance with each other. The second and third inductors having a mutual inductance with each other. A first capacitor has a first electrode connected to a first node. The first node is conductively coupled between the first and second inductors. A second capacitor has a second electrode connected to a second node. The second node is conductively coupled between the second and third inductors.
摘要:
A device includes a substrate, and a vertical inductor over the substrate. The vertical inductor includes a plurality of parts formed of metal, wherein each of the parts extends in one of a plurality of planes perpendicular to a major surface of the substrate. Metal lines interconnect neighboring ones of the plurality of parts of the vertical inductor.
摘要:
A transmission line is provided. In one embodiment, the transmission line comprises a substrate, a well within the substrate, a shielding layer over the well, and a plurality of intermediate metal layers over the shielding layer, the plurality of intermediate metal layers coupled by a plurality of vias. The transmission line further includes a top metal layer over the plurality of intermediate metal layers. A test structure for de-embedding an on-wafer device, and a wafer are also disclosed.
摘要:
The present disclosure provides a semiconductor device. The semiconductor device includes a semiconductor substrate having an integrated circuit (IC) device; an interconnect structure disposed on the semiconductor substrate and coupled with the IC device; and a transformer disposed on the semiconductor substrate and integrated in the interconnect structure. The transformer includes a first conductive feature; a second conductive feature inductively coupled with the first conductive feature; a third conductive feature electrically connected to the first conductive feature; and a fourth conductive feature electrically connected to the second conductive feature. The third and fourth conductive features are designed and configured to be capacitively coupled to increase a coupling coefficient of the transformer.
摘要:
An electronic device comprises first, second and third inductors connected in series and formed in a metal layer over a semiconductor substrate. The first and second inductors have a mutual inductance with each other. The second and third inductors having a mutual inductance with each other. A first capacitor has a first electrode connected to a first node. The first node is conductively coupled between the first and second inductors. A second capacitor has a second electrode connected to a second node. The second node is conductively coupled between the second and third inductors.
摘要:
A driving method of an optical actuator is applied to a projection system. The optical actuator includes a carrier, an optical element and an actuator component. The optical element is disposed at the carrier. The actuator component drives the carrier to rotate an angle. The driving method includes the steps of providing a driving signal having an initial section and a target section, and shifting the optical element between a position driven by the initial section and a position driven by the target section via the actuator component according to a first acceleration-deceleration section and a second acceleration-deceleration section. In addition, an optical actuator, a projection lens module and a projection system are also disclosed.
摘要:
The present disclosure provides an integrated circuit. The integrated circuit includes a substrate having a surface that is defined by a first axis and a second axis perpendicular to the first axis; and a capacitor structure disposed on the substrate. The capacitor structure includes a first conductive component; a second conductive component and a third conductive component symmetrically configured on opposite sides of the first conductive component. The first, second and third conductive components are separated from each other by respective dielectric material.