Abstract:
A method for manufacturing a fin field-effect transistor (FinFET) device comprises forming a plurality of fins on a substrate, epitaxially growing a sacrificial epitaxy region between the fins, stopping growth of the sacrificial epitaxy region at a beginning of merging of epitaxial shapes between neighboring fins, and forming a dielectric layer on the substrate including the fins and the sacrificial epitaxy region, wherein a portion of the dielectric layer is positioned between the sacrificial epitaxy region extending from fins of adjacent transistors.
Abstract:
Methods and semiconductor structures formed from the methods are provided which facilitate fabricating semiconductor fin structures. The methods include, for example: providing a wafer with at least one semiconductor fin extending above a substrate; transforming a portion of the semiconductor fin(s) into an isolation layer, the isolation layer separating a semiconductor layer of the semiconductor fin(s) from the substrate; and proceeding with forming a fin device(s) of a first architectural type in a first fin region of the semiconductor fin(s), and a fin device(s) of a second architectural type in a second fin region of the semiconductor fin(s), where the first architectural type and the second architectural type are different fin device architectures.
Abstract:
A semiconductor structure is provided that has semiconductor fins having variable heights without any undue topography. The semiconductor structure includes a semiconductor substrate having a first semiconductor surface and a second semiconductor surface, wherein the first semiconductor surface is vertically offset and located above the second semiconductor surface. An oxide region is located directly on the first semiconductor surface and/or the second semiconductor surface. A first set of first semiconductor fins having a first height is located above the first semiconductor surface of the semiconductor substrate. A second set of second semiconductor fins having a second height is located above the second semiconductor surface, wherein the second height is different than the first height and wherein each first semiconductor fin and each second semiconductor fin have topmost surfaces which are coplanar with each other.
Abstract:
An e-fuse is provided in one area of a semiconductor substrate. The E-fuse includes a vertical stack of from, bottom to top, base metal semiconductor alloy portion, a first metal semiconductor alloy portion, a second metal semiconductor portion, a third metal semiconductor alloy portion and a fourth metal semiconductor alloy portion, wherein the first metal semiconductor alloy portion and the third metal semiconductor portion have outer edges that are vertically offset and do not extend beyond vertical edges of the second metal semiconductor alloy portion and the fourth metal semiconductor alloy portion.
Abstract:
Semiconductor fabrication methods are provided which include facilitating fabricating semiconductor fin structures by: providing a wafer with at least one fin extending above a substrate, the at least one fin including a first layer disposed above a second layer; mechanically stabilizing the first layer; removing at least a portion of the second layer of the fin(s) to create a void below the first layer; filling the void, at least partially, below the first layer with an isolation material to create an isolation layer within the fin(s); and proceeding with forming a fin device(s) of a first architectural type in a first fin region of the fin(s), and a fin device(s) of a second architectural type in a second fin region of the fin(s), where the first architectural type and the second architectural type are different fin device architectures.
Abstract:
Embodiments herein provide device isolation in a complimentary metal-oxide fin field effect transistor. Specifically, a semiconductor device is formed with a retrograde doped layer over a substrate to minimize a source to drain punch-through leakage. A set of high mobility channel fins is formed over the retrograde doped layer, each of the set of high mobility channel fins comprising a high mobility channel material (e.g., silicon or silicon-germanium). The retrograde doped layer may be formed using an in situ doping process or a counter dopant retrograde implant. The device may further include a carbon liner positioned between the retrograde doped layer and the set of high mobility channel fins to prevent carrier spill-out to the high mobility channel fins.
Abstract:
Embodiments herein provide approaches for device isolation in a complimentary metal-oxide fin field effect transistor. Specifically, a semiconductor device is formed with a retrograde doped layer over a substrate to minimize a source to drain punch-through leakage. A set of replacement fins is formed over the retrograde doped layer, each of the set of replacement fins comprising a high mobility channel material (e.g., silicon, or silicon-germanium). The retrograde doped layer may be formed using an in situ doping process or a counter dopant retrograde implant. The device may further include a carbon liner positioned between the retrograde doped layer and the set of replacement fins to prevent carrier spill-out to the replacement fins.
Abstract:
Methods for semiconductor fabrication include forming a well in a semiconductor substrate. A pocket is formed within the well, the pocket having an opposite doping polarity as the well to provide a p-n junction between the well and the pocket. Defects are created at the p-n junction such that a leakage resistance of the p-n junction is decreased.
Abstract:
Embodiments of the present invention provide an improved structure and method for forming CMOS field effect transistors. In embodiments, silicon germanium (SiGe) is formed on a PFET side of a semiconductor structure, while silicon is disposed on an NFET side of a semiconductor structure. A narrow isolation region is formed between the PFET and NFET. The NFET fins are comprised of silicon and the PFET fins are comprised of silicon germanium.
Abstract:
A method for fabricating a semiconductor device comprises forming a nanowire on an insulator layer at a surface of a substrate; forming a dummy gate over a portion of the nanowire and a portion of the insulator layer; forming recesses in the insulator layer on opposing sides of the dummy gate; forming spacers on opposing sides of the dummy gate; forming source regions and drain regions in the recesses in the insulator layer on opposing sides of the dummy gate; depositing an interlayer dielectric on the source regions and the drain regions; removing the dummy gate to form a trench; removing the insulator layer under the nanowire such that a width of the trench underneath the nanowire is equal to or less than a distance between the spacers; and forming a replacement gate in the trench.