Abstract:
One illustrative method disclosed herein includes, among other things, forming a plurality of trenches in a semiconductor substrate so as to define a plurality of fins, forming a recessed layer of insulating material comprising a first insulating material in the trenches, wherein a portion of each of the plurality of fins is exposed above an upper surface of the recessed layer of insulating material, and masking a first portion of a first fin and performing at least one first etching process to remove at least a portion of an unmasked second fin. In this example, the method further includes forming a device isolation region for the FinFET device that comprises a second insulating material and forming an isolation protection layer above the device isolation region.
Abstract:
A method includes forming first and second gate cavities so as to expose first and second portions of a semiconductor material. A gate insulation layer is formed in the first and second gate cavities. A first work function material layer is formed in the first gate cavity. A second work function material layer is formed in the second gate cavity. A first barrier layer is selectively formed above the first work function material layer and the gate insulation layer in the first gate cavity. A second barrier layer is formed above the first barrier layer in the first gate cavity and above the second work function material layer and the gate insulation layer in the second gate cavity. A conductive material is formed above the second barrier layer in the first and second gate cavities in the presence of a treatment species to define first and second gate electrode structures.
Abstract:
A method includes providing a substrate having a first and a second plurality of fins with a first at least one dielectric material disposed thereon, removing upper portions of the first dielectric material to expose upper portions of the first and the second plurality of fins, removing the first dielectric material from the lower portions of the second plurality of fins to expose lower portions of the second plurality of fins, depositing a second at least one dielectric material on at least the upper and the lower exposed portions of the second plurality of fins and on the upper exposed portions of first plurality of fins, removing the second dielectric material to expose upper portions of the first and the second plurality of fins, and wherein the first dielectric material is different from the second dielectric material. The resulting structure may be operable for use as nFETs and pFETs.
Abstract:
One method disclosed includes, among other things, forming a first plurality of gate cavities in a first dielectric layer. A work function material layer is formed in the first plurality of gate cavities. A first conductive material is formed in at least a subset of the first plurality of gate cavities above the work function material layer to define a first plurality of gate structures. A first contact recess is formed in the first dielectric layer between two of the first plurality of gate structures. A second conductive material is formed in the first contact recess. The work function material layer is recessed selectively to the first and second conductive materials to define a plurality of cap recesses. A cap layer is formed in the plurality of cap recesses.
Abstract:
Aspects of the present invention relate to approaches for forming a narrow source-drain contact in a semiconductor device. A contact trench can be etched to a source-drain region of the semiconductor device. A titanium liner can be deposited in this contact trench such that it covers substantially an entirety of the bottom and walls of the contact trench. An x-metal layer can be deposited over the titanium liner on the bottom of the contact trench. A titanium nitride liner can then be formed on the walls of the contact trench. The x-metal layer prevents the nitriding of the titanium liner on the bottom of the contact trench during the formation of the nitride liner.
Abstract:
A method includes forming a plurality of fins above a substrate. A plurality of gate structures is formed above the plurality of fins. A first mask layer is formed above the plurality of fins and the plurality of gate structures. The first mask layer has at least one fin cut opening and at least one gate cut opening defined therein. A first portion of a first fin of the plurality of fins disposed below the fin cut opening is removed to define a fin cut cavity. A second portion of a first gate structure of the plurality of gate structures disposed below the gate cut opening is removed to define a gate cut cavity. An insulating material layer is concurrently formed in at least a portion of the fin cut cavity and the gate cut cavity.
Abstract:
For an integrated circuit product comprising a non-tapered FinFET device formed in a first region of the substrate and a tapered FinFET device in a second region of the substrate, the method includes, among other things, forming the fins for the non-tapered FinFET device in the first region by performing a fin-cut-last process and forming the fins for the tapered FinFET by performing a fin-cut-first process.
Abstract:
For an integrated circuit product comprising a non-tapered FinFET device formed in a first region of the substrate and a tapered FinFET device in a second region of the substrate, the method includes, among other things, forming the fins for the non-tapered FinFET device in the first region by performing a fin-cut-last process and forming the fins for the tapered FinFET by performing a fin-cut-first process.
Abstract:
A method for forming FinFETs having a capping layer for reducing punch through leakage includes providing an intermediate semiconductor structure having a semiconductor substrate and a fin disposed on the semiconductor substrate. A capping layer is disposed over the fin, and an isolation fill is disposed over the capping layer. A portion of the isolation fill and the capping layer is removed to expose an upper surface portion of the fin. Tapping layer and a lower portion of the fin define an interface dipole layer barrier, a portion of the capping layer operable to provide an increased negative charge or an increased positive charge adjacent to the fin, to reduce punch-through leakage compared to a fin without the capping layer.
Abstract:
One illustrative method disclosed herein includes, among other things, forming a first plurality of fins in the first region of the substrate, a second plurality of fins in the second region of the substrate, and a space in the substrate between two adjacent fins in the second region that corresponds to a first isolation region to be formed in the second region, forming a fin removal masking layer above the first and second regions of the substrate, wherein the fin removal masking layer has an opening positioned above at least a portion of at least one of the first plurality of fins, while masking all of the second plurality of fins in the second region and the space for the first isolation region, and performing an etching process through the first opening to remove the portions of the at least one of the first plurality of fins.