Abstract:
Methods for fabricating integrated circuits are provided. In one example, a method for fabricating an integrated circuit includes forming an isolation trench between two fin structures on an integrated circuit substrate, forming a flowable film in the isolation trench using a flowable chemical vapor deposition process, and annealing the flowable film to form a silicon oxide dielectric layer in the isolation trench. The annealing is performed at a temperature of less than about 200° C. with a process gas including N2 and H2O2.
Abstract translation:提供了制造集成电路的方法。 在一个示例中,制造集成电路的方法包括在集成电路基板上的两个鳍结构之间形成隔离沟槽,使用可流动的化学气相沉积工艺在隔离沟槽中形成可流动的膜,并对可流动薄膜进行退火以形成 隔离沟槽中的氧化硅介电层。 使用包括N 2和H 2 O 2的工艺气体在小于约200℃的温度下进行退火。
Abstract:
Methods for fabricating a layered circuit structure are provided, which include, for instance: depositing a first material layer above a substrate, the first material layer having an oxidized upper surface; providing a second material layer over the oxidized upper surface of the first material layer; and inhibiting diffusion of one or more elements from the oxidized upper surface of the first material layer into either the first material layer or the second material layer during the providing of the second material layer over the oxidized upper surface of the first material layer. The inhibiting may include one or more of modifying a characteristic(s) of the first material layer, forming a protective layer over the oxidized upper surface of the first material layer, or altering at least one process parameter employed in providing the second material layer.
Abstract:
Processes for preparing an integrated circuit for contact landing, processes for fabricating an integrated circuit, and integrated circuits prepared according to these processes are provided herein. An exemplary process for preparing an integrated circuit for contact landing includes providing a semiconductor structure that includes a transistor with source and drain regions, wherein at least one of the source and drain regions has a shaped contact structure overlaid with a contact etch stop layer and a pre-metal dielectric material. The pre-metal dielectric material is removed with one or more anisotropic etches, including at least one anisotropic etch selective to the pre-metal dielectric material. And, the contact etch stop layer overlaying the shaped contact structure is removed with a third anisotropic etch selective to the contact etch stop layer material to expose the shaped contact structure.
Abstract:
Provided are approaches for patterning multiple, dense features in a semiconductor device using a memorization layer. Specifically, an approach includes: patterning a plurality of openings in a memorization layer; forming a gap-fill material within each of the plurality of openings; removing the memorization layer; removing an etch stop layer adjacent the gap-fill material, wherein a portion of the etch stop layer remains beneath the gap-fill material; etching a hardmask to form a set of openings above the set of gate structures, wherein the etch to the hardmask also removes the gap-fill material from atop the remaining portion of the etch stop layer; and etching the semiconductor device to remove the hardmask within each of the set of openings. In one embodiment, a set of dummy S/D contact pillars is then formed over a set of fins of the semiconductor device by etching a dielectric layer selective to the gate structures.
Abstract:
Provided is a semiconductor device that includes a semiconductor substrate and a 10 to 40 Å thick high-k dielectric layer that contains one or both of hafnium dioxide (HfO2) and zirconium dioxide (ZrO2). The high-k dielectric layer is disposed on the semiconductor substrate, and it contains at least some tetragonal phase HfO2 and/or tetragonal phase ZrO2. Also provided are methods for making the semiconductor device, and electronic devices that employ the semiconductor device.
Abstract:
Provided are approaches for patterning multiple, dense features in a semiconductor device using a memorization layer. Specifically, an approach includes: patterning a plurality of openings in a memorization layer; forming a gap-fill material within each of the plurality of openings; removing the memorization layer; removing an etch stop layer adjacent the gap-fill material, wherein a portion of the etch stop layer remains beneath the gap-fill material; etching a hardmask to form a set of openings above the set of gate structures, wherein the etch to the hardmask also removes the gap-fill material from atop the remaining portion of the etch stop layer; and etching the semiconductor device to remove the hardmask within each of the set of openings. In one embodiment, a set of dummy S/D contact pillars is then formed over a set of fins of the semiconductor device by etching a dielectric layer selective to the gate structures.
Abstract:
Provided are approaches for patterning multiple, dense features in a semiconductor device using a memorization layer. Specifically, an approach includes: patterning a plurality of openings in a memorization layer; forming a gap-fill material within each of the plurality of openings; removing the memorization layer; removing an etch stop layer adjacent the gap-fill material, wherein a portion of the etch stop layer remains beneath the gap-fill material; etching a hardmask to form a set of openings above the set of gate structures, wherein the etch to the hardmask also removes the gap-fill material from atop the remaining portion of the etch stop layer; and etching the semiconductor device to remove the hardmask within each of the set of openings. In one embodiment, a set of dummy S/D contact pillars is then formed over a set of fins of the semiconductor device by etching a dielectric layer selective to the gate structures.
Abstract:
Circuit structure fabrication methods are provided which include: providing an interlayer structure above a substrate, the interlayer structure including porogens dispersed within a dielectric material; and pulse laser annealing the interlayer structure to form a treated interlayer structure, the pulse laser annealing polymerizing the dielectric material of the interlayer structure to form a polymeric dielectric material, that includes pores disposed therein. The pulse laser annealing facilitates increasing elasticity modulus of the treated interlayer structure by, in part, maintaining structural integrity of the treated interlayer structure, notwithstanding that there are pores disposed within the polymeric dielectric material which, for instance, facilitates reducing dielectric constant of the treated interlayer structure.
Abstract:
A method of fabricating an integrated circuit includes the steps of providing a semiconductor substrate comprising a semiconductor device disposed thereon and depositing a first silicon nitride layer over the semiconductor substrate and over the semiconductor device using a first deposition process. The first deposition process is a plasma-enhanced chemical vapor deposition (PECVD) process that operates over a plurality of cycles, each cycle having a first time interval and a second time interval. The PECVD process includes the steps of generating a plasma with a power source during the first time interval, the plasma comprising reactive ionic and radical species of a silicon-providing gas and a nitrogen-providing gas, and discontinuing generating the plasma during the second time interval immediately subsequent to the first time interval. The method further includes depositing a second silicon nitride layer over the first silicon nitride layer after the plurality of cycles.
Abstract:
A method of fabricating an integrated circuit includes the steps of providing a semiconductor substrate comprising a semiconductor device disposed thereon and depositing a first silicon nitride layer over the semiconductor substrate and over the semiconductor device using a first deposition process. The first deposition process is a plasma-enhanced chemical vapor deposition (PECVD) process that operates over a plurality of cycles, each cycle having a first time interval and a second time interval. The PECVD process includes the steps of generating a plasma with a power source during the first time interval, the plasma comprising reactive ionic and radical species of a silicon-providing gas and a nitrogen-providing gas, and discontinuing generating the plasma during the second time interval immediately subsequent to the first time interval. The method further includes depositing a second silicon nitride layer over the first silicon nitride layer after the plurality of cycles.