摘要:
A crystal growth method includes forming a mask layer capable of impeding crystal growth on a substrate in such a way a first nitride semiconductor layer has irregularities at a surface thereof exposed at a window region opened at a part of the mask layer, and growing a second nitride semiconductor layer over a region including the surface of the mask layer through crystal growth from the irregularities. Through-type dislocations can be reliably prevented from propagation due to the discontinuity of crystals at the irregularities and also to lateral crystal growth.
摘要:
A method for manufacturing a GaN semiconductor light-emitting element is provided. The method for manufacturing a GaN semiconductor light-emitting element includes forming, by crystal growth, a first GaN compound semiconductor layer of a first conductivity type, the top face of which corresponds to the A plane, an active layer composed of InxGa(1−x)N, the top face of which corresponds to the A plane, and a second GaN compound semiconductor layer of a second conductivity type, the top face of which corresponds to the A plane, in that order on a base which is a nonpolar plane, wherein the active layer is formed at a crystal growth rate of 0.3 nm/sec or more.
摘要翻译:提供一种制造GaN半导体发光元件的方法。 制造GaN半导体发光元件的方法包括通过晶体生长形成第一导电类型的第一GaN化合物半导体层,其顶面对应于A平面,由In x Ga(1- x)N,其顶面对应于A平面;以及第二导电类型的第二GaN化合物半导体层,其第二导电类型的顶表面相应于A平面,在基极上依次为非极性平面 其中,活性层以0.3nm / sec以上的晶体生长速度形成。
摘要:
A GaN based semiconductor light-emitting device is provided. The light-emitting device includes a first GaN based compound semiconductor layer of an n-conductivity type; an active layer; a second GaN based compound semiconductor layer; an underlying layer composed of a GaN based compound semiconductor, the underlying layer being disposed between the first GaN based compound semiconductor layer and the active layer; and a superlattice layer composed of a GaN based compound semiconductor doped with a p-type dopant, the superlattice layer being disposed between the active layer and the second GaN based compound semiconductor layer.
摘要:
A crystal foundation having dislocations is used to obtain a crystal film of low dislocation density, a crystal substrate, and a semiconductor device. One side of a growth substrate (11) is provided with a crystal layer (13) with a buffer layer (12) in between. The crystal layer (13) has spaces (13a), (13b) in an end of each threading dislocation D1 elongating from below. The threading dislocation D1 is separated from the upper layer by the spaces (13a), (13b), so that each threading dislocation D1 is blocked from propagating to the upper layer. When the displacement of the threading dislocation D1 expressed by Burgers vector is preserved to develop another dislocation, the spaces (13a), (13b) vary the direction of its displacement. As a result, the upper layer above the spaces (13a), (13b) turns crystalline with a low dislocation density.
摘要:
A semiconductor light emitting element, manufacturing method thereof, integrated semiconductor light emitting device, manufacturing method thereof, illuminating device, and manufacturing method thereof are provided.An n-type GaN layer is grown on a sapphire substrate, and a growth mask of SiN, for example, is formed thereon. On the n-type GaN layer exposed through an opening in the growth mask, a six-sided steeple-shaped n-type GaN layer is selectively grown, which has inclined crystal planes each composed of a plurality of crystal planes inclined from the major surface of the sapphire substrate by different angles of inclination to exhibit a convex plane as a whole. On the n-type GaN layer, an active layer and a p-type GaN layer are grown to make a light emitting element structure. Thereafter, a p-side electrode and an n-side electrode are formed.
摘要:
A method for manufacturing a GaN semiconductor light-emitting element is provided. The method for manufacturing a GaN semiconductor light-emitting element includes forming, by crystal growth, a first GaN compound semiconductor layer of a first conductivity type, the top face of which corresponds to the A plane, an active layer composed of InxGa(1−x)N, the top face of which corresponds to the A plane, and a second GaN compound semiconductor layer of a second conductivity type, the top face of which corresponds to the A plane, in that order on a base which is a nonpolar plane, wherein the active layer is formed at a crystal growth rate of 0.3 nm/sec or more.
摘要:
A semiconductor light emitting device is fabricated by forming a mask having an opening on a substrate, forming a crystal layer having a tilt crystal plane tilted from the principal plane of the substrate by selective growth from the opening of the mask, and forming, on the crystal layer, a first conductive type layer, an active layer, and a second conductive type layer, which extend within planes parallel to the tilt crystal plane, and removing the mask. The semiconductor light emitting device can be fabricated without increasing fabrication steps while suppressing threading dislocations extending from the substrate side and keeping a desirable crystallinity. The semiconductor light emitting device is also advantageous in that since deposition of polycrystal on the mask is eliminated, an electrode can be easily formed, and that the device structure can be finely cut into chips.