Abstract:
Technology for a user equipment (UE) operable to report periodic channel state information (CSI) is disclosed. The UE can determine a reporting period (Npd) of the UE for a serving cell. The UE can identify a Time-Division Duplex (TDD) uplink-downlink (UL-DL) configuration of a primary cell of the UE. The UE can transmit a periodic CSI report for the serving cell to an evolved node B (eNB) using a physical uplink control channel (PUCCH) on the primary cell according to the reporting period. The UE can use the reporting period of Npd=1 for the serving cell if the TDD UL-DL configuration of the primary cell is one of 0, 1, 3, 4, or 6 and all UL subframes of the primary cell in a radio frame are used for periodic CSI reporting.
Abstract:
Technology for reporting periodic channel state information (CSI) is disclosed. One method can include determining a reporting period (Npd) of a user equipment (UE) for a serving cell. A Time-Division Duplex (TDD) uplink-downlink (UL-DL) configuration of a primary cell of the UE can be identified. A periodic CSI report for the serving cell can be transmitted, from the UE to the eNB, using a physical uplink control channel (PUCCH) on the primary cell according to the reporting period. The reporting period of Npd=1 can be used for the serving cell if the TDD UL-DL configuration of the primary cell is one of 0, 1, 3, 4, or 6 and all UL subframes of the primary cell in a radio frame are used for periodic CSI reporting.
Abstract:
An evolved node (eNB) operable to transmit a Time Division Duplex (TDD) uplink-downlink (UL-DL) reconfiguration in a heterogeneous network (HetNet) is disclosed. The eNB can receive, from a user equipment (UE), a UE capability report that indicates the UE supports a TDD UL-DL reconfiguration functionality. The eNB can transmit, to the UE, a configuration to enable TDD UL-DL reconfiguration at the UE. The eNB can transmit, to the UE, a TDD UL-DL reconfiguration signal in a downlink control information (DCI) message. The UE can be configured to update a TDD UL-DL configuration of the UE based on the TDD UL-DL reconfiguration signal transmitted on a physical downlink control channel (PDCCH) in preconfigured downlink or special (DL/S) subframes by the eNB.
Abstract:
Disclosed is a method including communicating, by a mobile device, with a base station via first and second component carriers having different frequency bands and time division duplexing (TDD) configurations. The method may include receiving one or more downlink transmissions via the second component carrier. The method may include selecting a hybrid automatic repeat request (HARQ) timing sequence based on the TDD configurations of the first and second component carriers. The method may include transmitting one or more positive acknowledgment and/or negative acknowledgement (ACK/NACK) signals, associated with the one or more downlink transmissions, according to the selected HARQ timing sequence. Other embodiments may be described and claimed.
Abstract:
A user equipment (UE) is disclosed. The UE can identify a downlink control channel. The UE can determine when the downlink control channel is an enhanced physical downlink control channel (EPDCCH). The UE can select an enhanced physical uplink control channel (PUCCH) resource allocation for a hybrid automatic retransmission re-quest-acknowledge (HARQ-ACK) transmission when the downlink control channel is the EPDCCH.
Abstract:
A system and method utilizes a selected PRB configuration for a new carrier type for a 3GPP-type wireless network. A downlink signal is received that comprises a demodulation reference signal pattern in at least one predetermined subframe of the downlink signal. The subframe comprises a first predetermined number of the plurality of orthogonal frequency division multiplex (OFDM) symbols comprising synchronization signals for a legacy version of the downlink signal and the demodulation reference signal pattern comprising a second predetermined number of OFDM symbols that are different from the first predetermined number of the plurality of OFDM symbols. After receiving the downlink signal, the demodulation reference signal pattern in the downlink signal is demodulated.
Abstract:
Disclosed in some examples is a method for providing a HARQ response in an LTE network for a PUCCH format 1b. The method includes receiving one or more downlink assignments of a bundling window over a wireless downlink control channel; setting a reception status for each sub-frame of a downlink data channel in the bundling window based on whether the sub-frame on the downlink data channel was associated with a particular one of the received downlink assignments and based upon whether the sub-frame was successfully received; setting a reception status of sub-frames of the downlink data channel in the bundling window that did not have a corresponding downlink assignment to a predetermined value; and transmitting a response, the response based upon the reception statuses set by the response module.
Abstract:
An apparatus, computer-readable medium, and method to determine a user equipment (UE) location in a wireless network using signals from a wireless local-area network are disclosed. A wireless communication network entity may be configured to send WLAN assistance data to a UE. The WLAN assistance data may include a list of one or more WLAN access points (APs). The wireless communication network entity may receive location information from the UE. The location information may be based on measurements of signals from one or more of the WLAN APs. The wireless communication network entity may determine an estimate of the location of the UE based on the location information and stored information at the wireless communication network. The wireless communication network entity may determine the estimate of the location of the UE based on the measurements of the signals of the WLAN APs and a geographic position of the WLAN APs.
Abstract:
Disclosed is a method including communicating, by a mobile device, with a base station via first and second component carriers having different frequency bands and time division duplexing (TDD) configurations. The method may include receiving one or more downlink transmissions via the second component carrier. The method may include selecting a hybrid automatic repeat request (HARQ) timing sequence based on the TDD configurations of the first and second component carriers. The method may include transmitting one or more positive acknowledgment and/or negative acknowledgement (ACK/NACK) signals, associated with the one or more downlink transmissions, according to the selected HARQ timing sequence. Other embodiments may be described and claimed.
Abstract:
A wireless cellular device comprises physical layer circuitry configured to transmit and receive radio frequency electrical signals to communicate directly with one or more separate wireless devices using a communication channel of a cellular network and a WiFi communication channel of a WiFi communication spectrum; and processing circuitry configured to initiate transmission of a WiFi subframe via the WiFi communication channel to reserve communication time on the WiFi communication channel for use by the same or a different cellular device during the reserved communication time.