Abstract:
Structures and methods of making a dielectric region in a bulk silicon (Si) substrate of a mixed-signal integrated circuit (IC) provide a high-Q passive resonator. Deep trenches within the bulk Si substrate in directions are expanded by wet etching to form contiguous cavities, which are filled by Si oxide to form a dielectric region. The dielectric region enhances the quality (Q) of an overlying passive resonator, formed in metallization layers of the mixed-signal IC.
Abstract:
Disclosed are semiconductor structures with metal lines and methods of manufacture which reduce or eliminate extrusion formation. The method includes forming a metal wiring comprising a layered structure of metal materials with an upper constraining layer. The method further includes forming a film on the metal wiring which prevents metal extrusion during an annealing process.
Abstract:
A structure includes a substrate comprising a region having a circuit or device which is sensitive to electrical noise. Additionally, the structure includes a first isolation structure extending through an entire thickness of the substrate and surrounding the region and a second isolation structure extending through the entire thickness of the substrate and surrounding the region.
Abstract:
A semiconductor fabrication is described, wherein a MOS device and a MEMS device is fabricated simultaneously in the BEOL process. A silicon layer is deposited and etched to form a silicon film for a MOS device and a lower silicon sacrificial film for a MEMS device. A conductive layer is deposited atop the silicon layer and etched to form a metal gate and a first upper electrode. A dielectric layer is deposited atop the conductive layer and vias are formed in the dielectric layer. Another conductive layer is deposited atop the dielectric layer and etched to form a second upper electrode and three metal electrodes for the MOS device. Another silicon layer is deposited atop the other conductive layer and etched to form an upper silicon sacrificial film for the MEMS device. The upper and lower silicon sacrificial films are then removed via venting holes.
Abstract:
A low capacitance density, high voltage MIM capacitor and the high density MIM capacitor and a method of manufacture are provided. The method includes depositing a plurality of plates and a plurality of dielectric layers interleaved with one another. The method further includes etching a portion of an uppermost plate of the plurality of plates while protecting other portions of the uppermost plate. The protected other portions of the uppermost plate forms a top plate of a first metal-insulator-metal (MIM) capacitor and the etching exposes a top plate of a second MIM capacitor.
Abstract:
A semiconductor structure with low resistance conduction paths and methods of manufacture are disclosed. The method includes forming at least one low resistance conduction path on a wafer, and forming an electroplated seed layer in direct contact with the low resistance conduction path.
Abstract:
Wire-bonded semiconductor structures using organic insulating material and methods of manufacture are disclosed. The method includes forming a metal wiring layer in an organic insulator layer. The method further includes forming a protective layer over the organic insulator layer. The method further includes forming a via in the organic insulator layer over the metal wiring layer. The method further includes depositing a metal layer in the via and on the protective layer. The method further includes patterning the metal layer with an etch chemistry that is damaging to the organic insulator layer.
Abstract:
Structures and methods of making a dielectric region in a bulk silicon (Si) substrate of a mixed-signal integrated circuit (IC) provide a high-Q passive resonator. Deep trenches within the bulk Si substrate in directions are expanded by wet etching to form contiguous cavities, which are filled by Si oxide to form a dielectric region. The dielectric region enhances the quality (Q) of an overlying passive resonator, formed in metallization layers of the mixed-signal IC.
Abstract:
Disclosed are structures with an optical waveguide having a first segment at a first level and a second segment extending between the first level and a higher second level and further extending along the second level. Specifically, the waveguide comprises a first segment between first and second dielectric layers. The second dielectric layer has a trench, which extends through to the first dielectric layer and which has one side positioned laterally adjacent to an end of the first segment. The waveguide also comprises a second segment extending from the bottom of the trench on the side adjacent to the first segment up to and along the top surface of the second dielectric layer on the opposite side of the trench. A third dielectric layer covers the second segment in the trench and on the top surface of the second dielectric layer. Also disclosed are methods of forming such optoelectronic structures.
Abstract:
Disclosed is a semiconductor chip having a dual damascene insulated wire and insulated through-substrate via (TSV) structure and methods of forming the chip. The methods incorporate a dual damascene technique wherein a trench and via opening are formed in dielectric layers above a substrate such that the trench is above a first via and the via opening is positioned adjacent to the first via and extends vertically from the trench and into the substrate. Dielectric spacers are formed on the sidewalls of the trench and via opening. A metal layer is deposited to form an insulated wire in the trench and an insulated TSV in the via opening. Thus, the insulated wire electrically connects the insulated TSV to the first via and, thereby to an on-chip device or lower metal level wire below. Subsequently, the substrate is thinned to expose the insulated TSV at the bottom surface of the substrate.