Abstract:
Disclosed herein is a thermally-assisted magnetic tunnel junction structure including a thermal barrier. The thermal barrier is composed of a cermet material in a disordered form such that the thermal barrier has a low thermal conductivity and a high electric conductivity. Compared to conventional magnetic tunnel junction structures, the disclosed structure can be switched faster and has improved compatibility with standard semiconductor fabrication processes.
Abstract:
Disclosed herein is a method of forming electronic device having thin-film components by using trenches. One or more of thin-film components is formed by depositing a thin-film in the trench followed by processing the deposited thin-film to have the desired thickness.
Abstract:
A phase change memory may be formed of a phase change material alloy that produces a higher threshold voltage and, in some cases, is operable at higher temperatures. For example, the formulation may include a poor metal, antimony, and at least one of tellurium or selenium.
Abstract:
A phase change memory including an ovonic threshold switch may be formed with reduced argon in the ovonic threshold switch. The presence of argon adversely impacts the performance of the ovonic threshold switch. Argon concentration can be reduced by depositing the phase change material for the ovonic threshold switch in a relatively low pressure argon environment to enable the argon pressure within said chamber to be reduced.
Abstract:
A method for making an integrated circuit. An area of dielectric material is formed on a substrate by hydrolyzing a plurality of precursors to form a hybrid organic inorganic material. One of the precursors is a compound R1R2R3SiR4, wherein R1, R2, R3 are each independently aryl, a cross linkable group, or alkyl of 1-14 carbons, and wherein R4 is alkoxy, acyloxy, —OH or halogen. Also disclosed is a method for forming a hybrid organic inorganic layer on a substrate by hydrolyzing a tetraalkoxysilane, trialkoxysilane, trichlorosilane, dialkoxysilane, or dichlorosilane, with R1R2R4MR5, wherein R1, R2 and R4 are independently aryl, alkyl, alkenyl, epoxy or alkynyl, at least one of R1, R2 and R4 is fully or partially fluorinated, M is selected from group 14 of the periodic table, and R5 is either alkoxy, OR3 wherein R3 is alkyl of 1 to 10 carbons, or halogen.
Abstract translation:一种制造集成电路的方法。 通过水解多个前体以形成混合有机无机材料,在基底上形成电介质材料区域。 其中一种前体是化合物R 1 R 2 R 3 R 3 SiR 4,其中R 1 R 2,R 3,R 3各自独立地为芳基,可交联基团或1-14个碳原子的烷基,并且其中R 4, 烷氧基,酰氧基,-OH或卤素。 还公开了通过水解四烷氧基硅烷,三烷氧基硅烷,三氯硅烷,二烷氧基硅烷或二氯硅烷在基底上形成杂化有机无机层的方法,其中R 1,R 2,R 2, 其中R 1,R 2,R 4和R 4独立地为芳基 烷基,烯基,环氧基或炔基,R 1,R 2和R 4中的至少一个是完全或部分氟化的,M是 选自周期表第14族,R 5为烷氧基,其中R 3为1至10个碳的烷基, 或卤素。
Abstract:
The present disclosure concerns a magnetic element to be written using a thermally-assisted switching write operation comprising a magnetic tunnel junction formed from a tunnel barrier being disposed between first and second magnetic layers, said second magnetic layer having a second magnetization which direction can be adjusted during a write operation when the magnetic tunnel junction is heated at a high threshold temperature; an upper current line connected at the upper end of the magnetic tunnel junction; and a strap portion extending laterally and connected to the bottom end of the magnetic tunnel junction; the magnetic device further comprising a bottom thermal insulating layer extending substantially parallel to the strap portion and arranged such that the strap portion is between the magnetic tunnel junction and the bottom thermal insulating layer. The magnetic element allows for reducing heat losses during the write operation and has reduced power consumption.
Abstract:
Disclosed herein is a method of forming electronic device having thin-film components by using trenches. One or more of thin-film components is formed by depositing a thin-film in the trench followed by processing the deposited thin-film to have the desired thickness.
Abstract:
Disclosed herein is a method of forming electronic device having thin-film components by using trenches. One or more of thin-film components is formed by depositing a thin-film in the trench followed by processing the deposited thin-film to have the desired thickness.
Abstract:
A method of forming a low dielectric constant structure. The method comprises providing at a first temperature a dielectric material having a first dielectric constant and a first elastic modulus, and curing the dielectric material by a thermal curing process, in which the material is heated to a second temperature by increasing the temperature at an average rate of at least 1° C. per second. As a result a densified, dielectric material is obtained which has a low dielectric constant.
Abstract:
A method for making an integrated circuit is disclosed as comprising depositing alternating regions of electrically conductive and dielectric materials on a substrate, wherein an area of dielectric material is formed by: a silane precursor having a fully or partially fluorinated first organic group comprising an unsaturated carbon-carbon double bond, the fully or partially fluorinated organic group bound to silicon in the silane precursor; forming from the silane precursor a hybrid organic-inorganic material having a molecular weight of at least 500 on a substrate; and increasing the molecular weight of the hybrid material by exposure to heat, electromagnetic radiation or electron beam so as to break the unsaturated carbon-carbon double bond and cross link via the fully or partially fluorinated organic group. Also disclosed is a method for making an integrated circuit is disclosed as comprising: reacting a compound of the general formula X3MOR33, where X3 is a halogen, M is silicon, and OR3 is alkoxy; with a compound of the general formula R1M1; where R1 is selected from alkyl, alkenyl, aryl and alkynyl and wherein R1 is partially or fully fluorinated; and M1 is an element from group I of the periodic table; so as to form a compound of the general formula R1MOR33; hydrolyzing and condensing R1MOR33 so as to form a hybrid organic-inorganic material with a molecular weight of at least 500; depositing the hybrid organic-inorganic material on a substrate as an insulator in an integrated circuit; depositing, before or after depositing the hybrid material, an electrically conductive material within the integrated circuit.