Abstract:
The present disclosure relates generally to a welding process for a battery module. In an embodiment, a system for welding two components in a battery module includes a laser source configured to emit a laser beam onto a workpiece having a first battery module component and a second battery module component. The system also has an actuator coupled to the laser source and configured to move the laser beam along a first axis and a second axis and a controller electrically coupled to the laser source and the actuator. The controller is configured to send a signal to the laser source and the actuator to form a sinusoidal lap weld on a surface of the workpiece, such that the first battery module component is electrically coupled to the second battery module component.
Abstract:
The present disclosure includes a battery module having a housing with a cell receptacle region defined by walls of the housing and configured to enable passage of electrochemical cells therethrough. The battery module also includes a bus bar carrier sealed in the cell receptacle region. The bus bar carrier includes a perimeter having flexible ribs extending along at least a majority of the perimeter and configured to enable intimate contact between the walls of the housing and the perimeter of the bus bar carrier.
Abstract:
The present disclosure relates generally to the field of batteries and battery modules, and more specifically, relates to a system and method for manufacturing terminal assemblies for lithium-ion battery modules. A disclosed battery module includes a terminal block assembly that is secured to a polymer housing of the battery module. The terminal block assembly includes a terminal post having a post portion and a base portion that extends outward from a central axis of the post portion. The terminal block assembly also includes a bus bar coupled to the base portion of the terminal post without welding, wherein the bus bar includes a trough disposed near the terminal post. The terminal block assembly further includes a polymer portion overmolding at least the trough of the bus bar to form a drainage channel near the terminal post.
Abstract:
A battery module and a method of manufacture are provided. The battery module may include a printed circuit board (PCB) assembly. The PCB assembly may include a PCB designed to be disposed in a battery module for controlling operations of the battery module. The PCB may also include voltage sensing circuitry. In addition, the PCB assembly may include a bus bar cell interconnect. The bus bar cell interconnect may electrically couple batteries of the battery module. The PCB assembly may also include a voltage sense connection tab. The voltage sense connection tab may carry a voltage between a bus bar cell interconnect of the battery module and the voltage sensing circuitry on the PCB.
Abstract:
The present disclosure relates generally to a welding process for a battery module. In an embodiment, a system for welding two components in a battery module includes a laser source configured to emit a laser beam onto a workpiece having a first battery module component and a second battery module component. The system also has an actuator coupled to the laser source and configured to move the laser beam along a first axis and a second axis and a controller electrically coupled to the laser source and the actuator. The controller is configured to send a signal to the laser source and the actuator to form a sinusoidal lap weld on a surface of the workpiece, such that the first battery module component is electrically coupled to the second battery module component.
Abstract:
The present disclosure relates to a battery module that includes a housing having a first protruding shelf along a first perimeter of the housing, a second protruding shelf along a second perimeter of the housing, where the first and second protruding shelves each include an absorptive material configured to absorb a first laser emission. The battery module also includes an electronics compartment cover configured to be coupled to the housing via a first laser weld, and a cell receptacle region cover configured to be coupled to the housing via a second laser weld. The electronics compartment cover has a first transparent material configured to transmit the first laser emission toward the first protruding shelf and the cell receptacle region cover has a second transparent material configured to transmit the first laser emission or a second laser emission toward the second protruding shelf.
Abstract:
The present disclosure includes a battery module having a housing with a cell receptacle region defined by walls of the housing and configured to enable passage of electrochemical cells therethrough. The battery module also includes a bus bar carrier sealed in the cell receptacle region. The bus bar carrier includes a perimeter having flexible ribs extending along at least a majority of the perimeter and configured to enable intimate contact between the walls of the housing and the perimeter of the bus bar carrier.
Abstract:
The present disclosure relates to a battery module that includes a stack of battery cells, where each battery cell has a terminal, and the terminal has a first alloy of a metal. The battery module has a bus bar that includes a body having a second alloy of the metal, nickel plating on at least a portion of the body, and an indentation disposed on the body, where a thickness of the nickel plating is between 0.2% and 20% of an overall thickness of the body, and a weld physically and electrically coupling the respective terminal to the bus bar. The indentation has a depth between 10% and 90% of the overall thickness, an area of the indentation is between 5% and 20% of an overall area of the body, and the nickel plating enables the weld to be stronger than a weld between the first and second alloys.
Abstract:
The present disclosure relates to a battery module that includes a stack of battery cells, where each battery cell has a terminal, and the terminal has a first alloy of a metal. The battery module has a bus bar that includes a body having a second alloy of the metal, nickel plating on at least a portion of the body, and an indentation disposed on the body, where a thickness of the nickel plating is between 0.2% and 20% of an overall thickness of the body, and a weld physically and electrically coupling the respective terminal to the bus bar. The indentation has a depth between 10% and 90% of the overall thickness, an area of the indentation is between 5% and 20% of an overall area of the body, and the nickel plating enables the weld to be stronger than a weld between the first and second alloys.
Abstract:
The present disclosure relates to a battery module that includes a housing having a first protruding shelf along a first perimeter of the housing, a second protruding shelf along a second perimeter of the housing, where the first and second protruding shelves each include an absorptive material configured to absorb a first laser emission. The battery module also includes an electronics compartment cover configured to be coupled to the housing via a first laser weld, and a cell receptacle region cover configured to be coupled to the housing via a second laser weld. The electronics compartment cover has a first transparent material configured to transmit the first laser emission toward the first protruding shelf and the cell receptacle region cover has a second transparent material configured to transmit the first laser emission or a second laser emission toward the second protruding shelf.