Abstract:
A semiconductor structure and a method for forming the same are provided. The semiconductor structure includes a substrate, a stacked structure, a dielectric layer, a conductive structure, a dielectric structure and a conductive plug. The stacked structure includes dielectric films and conductive films arranged alternately. The dielectric layer is between the conductive structure and a sidewall of the stacked structure. The dielectric structure is on the stacked structure and defining a through via. The conductive plug fills the through via and physically contacts one of the conductive films exposed by the through via and adjoined with the dielectric layer.
Abstract:
A memory array includes a plurality of ridge-shaped multi-layer stacks extending along a first direction, and a hard mask layer formed on top of the plurality of ridge-shaped multi-layer stacks. The hard mask layer includes a plurality of stripes vertically aligned with the plurality of ridge-shaped multi-layer stacks, respectively, a plurality of bridges connecting adjacent ones of the stripes along a second direction orthogonal to the first direction, and a plurality of hard mask through holes between the plurality of bridges and the plurality of stripes.
Abstract:
A memory array includes a plurality of ridge-shaped multi-layer stacks extending along a first direction, and a hard mask layer formed on top of the plurality of ridge-shaped multi-layer stacks. The hard mask layer includes a plurality of stripes vertically aligned with the plurality of ridge-shaped multi-layer stacks, respectively, a plurality of bridges connecting adjacent ones of the stripes along a second direction orthogonal to the first direction, and a plurality of hard mask through holes between the plurality of bridges and the plurality of stripes.
Abstract:
A semiconductor structure has a second portion with an appendage on one side of the second portion and extruding along the longitudinal direction of the second portion. Moreover the semiconductor structure also has a gate line longitudinally parallel to the second portion, wherein the length of the gate line equals to the longitudinal length of the second portion.
Abstract:
An integrated circuit and an operating method for the same are provided. The integrated circuit comprises a stacked structure and a conductive structure. The stacked structure comprises a conductive strip. The conductive structure is disposed above the stacked structure and electrically connected to the conductive strip. The conductive structure and the conductive strip have various gap distances between corresponding points of different pairs according to a basic axis.
Abstract:
A memory array includes a plurality of ridge-shaped multi-layer stacks extending along a first direction, and a hard mask layer formed on top of the plurality of ridge-shaped multi-layer stacks. The hard mask layer includes a plurality of stripes vertically aligned with the plurality of ridge-shaped multi-layer stacks, respectively, a plurality of bridges connecting adjacent ones of the stripes along a second direction orthogonal to the first direction, and a plurality of hard mask through holes between the plurality of bridges and the plurality of stripes.
Abstract:
A three dimensional stacked semiconductor structure comprises a stack including plural oxide layers and conductive layers arranged alternately, at least a contact hole formed vertically to the oxide layers and the conductive layers, and extending to one of the conductive layers, an insulator formed at the sidewall of the contact hole, a conductor formed in the contact hole and connecting the corresponding conductive layer, and the corresponding conductive layer comprises a silicide. The silicide could be formed at edges or an entire body of the corresponding conductive layer. Besides the silicide, the corresponding conductive layer could, partially or completely, further comprise a conductive material connected to the conductor. The corresponding conductive layer which the contact hole extends to has higher conductivity than other conductive layers. Also, the 3D stacked semiconductor structure could be applied to a fan-out region of a 3D flash memory.
Abstract:
A source of charge carriers in thin film transistor-based memory devices is provided for a memory. The source of charge carriers can include a diode having a first and second terminal. A NAND string coupled on a first end via a first switch to a bit line, is coupled on a second end via a second switch to the first terminal of the diode. Separately drivable first and second supply lines are coupled to the first and second terminals, respectively of the diode. Circuitry is included that is coupled to the first and second supply lines, that is configured to bias the first and second supply lines with different bias conditions depending on the mode of operation, including forward bias conditions and reverse bias conditions.
Abstract:
A layer of phase change material with silicon or another semiconductor, or a silicon-based or other semiconductor-based additive, is formed using a composite sputter target including the silicon or other semiconductor, and the phase change material. The concentration of silicon or other semiconductor is more than five times greater than the specified concentration of silicon or other semiconductor in the layer being formed. For silicon-based additive in GST-type phase change materials, sputter target may comprise more than 40 at % silicon. Silicon-based or other semiconductor-based additives can be formed using the composite sputter target with a flow of reactive gases, such as oxygen or nitrogen, in the sputter chamber during the deposition.
Abstract:
For certain three dimensionally stacked memory devices, bit lines or word lines for memory cells are stacked in spaced apart ridge like structures arranged to extend in a first direction. In such structures, complementary wordlines or bit lines, can be damascene features between the spaced apart. The damascene conductors can be formed using double patterned masks to etch sub-lithographic sacrificial lines, forming a fill over the sacrificial lines, and then removing the sacrificial lines to leave trenches that act as the damascene molds in the fill. Then the trenches are filled with the conductor material. The 3D memory array can include dielectric charge trapping memory cells, which have a high-K blocking dielectric layer, and in which the conductor material comprises a high work function material.