摘要:
A first conductivity layer and a first insulating film are successively formed on a channel layer, and a photoresist film is formed on the first insulating film. The photoresist film is selectively exposed to light using a photomask and patterned. Using the patterned photoresist film as a mask, the first insulating film and the first conductivity layer are etched to form source electrodes from the first conductivity layer. Using the first insulating film and the source electrodes as a mask, an impurity of one conductivity type is diffused into exposed portions of the channel layer to form source regions. A second insulating film is formed in covering relation to side walls and upper surfaces of the source electrodes. Using the second insulating film as a mask, the channel layer and the common drain layer are etched to form trenches in the source regions, the channel layer, and the common drain layer. A third insulating film is formed on surfaces of the trenches, and a second conductive layer is formed as a gate electrode on the entire surface so as to fill up the trenches and cover the second insulating film.
摘要:
Conventional power MOSFETs enables prevention of an inversion in a surrounding region surrounding the outer periphery of an element region by a wide annular layer and a wide sealed metal. Since, resultantly, the area of the surrounding region is large, increase in the element region has been restrained. A semiconductor device is hereby provided which has an inversion prevention region containing an MIS (MOS) structure. The width of polysilicon for the inversion prevention region is large enough to prevent an inversion since the area of an oxide film can be increased by the depth of the trench. By this, leakage current can be reduced even though the area of the region surrounding the outer periphery of the element region is not enlarged. In addition, since the element region is enlarged, on-state resistance of the MOSFET can be reduced.
摘要:
The present invention improves the characteristic of a trench-type vertical MOSFET. When a trench 23 serving as a gate 25 is formed, it is made in a shape of “&ggr;” which is convex toward the inside of the trench. Thus, the surface area of the trench is reduced so that both gate-source capacitance and gate-drain capacitance can be reduced, thereby shortening the switching time of the MOSFET.
摘要:
The present invention improves the characteristic of a trench-type vertical MOSFET. When a trench 23 serving as a gate 25 is formed, it is made in a shape of ".gamma." which is convex toward the inside of the trench. Thus, the surface area of the trench is reduced so that both gate-source capacitance and gate-drain capacitance can be reduced, thereby shortening the switching time of the MOSFET.
摘要:
A channel layer is formed in a surface of a semiconductor substrate, and a plurality of trenches are formed in the surface of the semiconductor substrate, the trenches being deeper than the channel layer. Then, gate electrodes are formed in the trenches, respectively, after which body layers are formed between the trenches and source layers are formed adjacent to the trenches.
摘要:
In a conventional power MOSFET, an electric field concentration occurs at a gate electrode bottom portion on the outermost periphery of an operating area, thereby causing a deterioration in high voltage strength between the drain and the source, or between the collector and emitter. In this invention, a trench at the outermost periphery of an operating area is shallower than trenches of the operating area. Thereby, the electric field concentration at the gate electrode bottom portion on the outermost periphery of the operating area is relieved, and a deterioration in high voltage strength between the drain and source is suppressed. Furthermore, by narrowing the outermost peripheral trench aperture portion, trenches different in depth can be formed by an identical step.
摘要:
In a MOSFET, after an element region is formed, a wiring layer is formed subsequently to a barrier metal layer, and hydrogen annealing is performed. However, in the case of an n-channel MOSFET, a threshold voltage is lowered due to an occlusion characteristic of the barrier metal layer. Thus, an increased impurity concentration in a channel layer causes a problem that reduction in an on-resistance is inhibited. According to the present invention, after a barrier metal layer is formed, an opening is provided in the barrier metal layer on an interlayer insulating film, and hydrogen annealing treatment is performed after a wiring layer is formed. Thus, an amount of hydrogen which reaches a substrate is further increased, and lowering of a threshold voltage is suppressed. Moreover, since an impurity concentration in a channel layer can be lowered, an on-resistance is reduced.
摘要:
Disclosed is a semiconductor device in which emitter pad electrodes connected to an active region, collector and base pad electrodes are formed on a surface of a semiconductor substrate. Furthermore, on a back surface of the semiconductor substrate, a backside electrode is formed. Moreover, the emitter pad electrodes connected to a grounding potential are connected to the backside electrode through feedthrough electrodes penetrating the semiconductor substrate in a thickness direction.
摘要:
When Ti as a barrier metal layer is brought into contact with a diffusion region of boron provided on a surface of a silicon substrate, there is a problem that boron is absorbed by titanium silicide, and contact resistance is increased. Although there is a method of additionally implanting boron whose amount is equal to the amount of boron absorbed by titanium silicide, there has been a problem that when boron is additionally implanted into, for example, a source region in a p-channel type, the additionally added boron is diffused deeply at the diffusion step, and characteristics are deteriorated. According to the invention, after formation of an element region, boron is additionally implanted into the whole surface at a dosage of about 10% of an element region, and is activated in the vicinity of a surface of a silicon substrate by an alloying process of a barrier metal layer. By this, a specified concentration profile of the element region is kept, and the impurity concentration only in the vicinity of the surface can be raised. Accordingly, even if boron is absorbed by titanium silicide, a specified boron concentration can be kept in the element region, and the increase of contact resistance can be suppressed.
摘要:
Disclosed is a semiconductor device in which emitter pad electrodes connected to an active region, collector and base pad electrodes are formed on a surface of a semiconductor substrate. Furthermore, on a back surface of the semiconductor substrate, a backside electrode is formed. Moreover, the emitter pad electrodes connected to a grounding potential are connected to the backside electrode through feedthrough electrodes penetrating the semiconductor substrate in a thickness direction.