摘要:
A III-nitride edge-emitting laser diode is formed on a surface of a III-nitride substrate having a semipolar orientation, wherein the III-nitride substrate is cleaved by creating a cleavage line along a direction substantially perpendicular to a nonpolar orientation of the III-nitride substrate, and then applying force along the cleavage line to create one or more cleaved facets of the III-nitride substrate, wherein the cleaved facets have an m-plane or a-plane orientation.
摘要:
A method for the fabrication of nonpolar indium gallium nitride (InGaN) films as well as nonpolar InGaN-containing device structures using metalorganic chemical vapor deposition (MOVCD). The method is used to fabricate nonpolar InGaN/GaN violet and near-ultraviolet light emitting diodes and laser diodes.
摘要:
An off-axis cut of a nonpolar III-nitride wafer towards a polar (−c) orientation results in higher polarization ratios for light emission than wafers without such off-axis cuts. A 5° angle for an off-axis cut has been confirmed to provide the highest polarization ratio (0.9) than any other examined angles for off-axis cuts between 0° and 27°.
摘要:
A III-nitride photovoltaic device structure and method for fabricating the III-nitride photovoltaic device that increases the light collection efficiency of the III-nitride photovoltaic device. The III-nitride photovoltaic device includes one or more III-nitride device layers, and the III-nitride photovoltaic device functions by collecting light that is incident on the back-side of the III-nitride device layers. The III-nitride device layers are grown on a substrate, wherein the III-nitride device layers are exposed when the substrate is removed and the exposed III-nitride device layers are then intentionally roughened to enhance their light collection efficiency. The collection of the incident light via the back-side of the device simplifies the fabrication of the multiple junctions in the device. The III-nitride photovoltaic device may include grid-like contacts, transparent or semi-transparent contacts, or reflective contacts.
摘要:
A method of device growth and p-contact processing that produces improved performance for non-polar III-nitride light emitting diodes and laser diodes. Key components using a low defect density substrate or template, thick quantum wells, a low temperature p-type III-nitride growth technique, and a transparent conducting oxide for the electrodes.
摘要:
A method for improved growth of a semipolar (Al,In,Ga,B)N semiconductor thin film using an intentionally miscut substrate. Specifically, the method comprises intentionally miscutting a substrate, loading a substrate into a reactor, heating the substrate under a flow of nitrogen and/or hydrogen and/or ammonia, depositing an InxGa1-xN nucleation layer on the heated substrate, depositing a semipolar nitride semiconductor thin film on the InxGa1-xN nucleation layer, and cooling the substrate under a nitrogen overpressure.
摘要翻译:使用有意识的基板改善半极性(Al,In,Ga,B)N半导体薄膜生长的方法。 具体地说,该方法包括有意地将基板,基板加载到反应器中,在氮气和/或氢气和/或氨气流下加热基板,在加热的基板上沉积In x Ga 1-x N成核层,沉积半极性氮化物 半导体薄膜在InxGa1-xN成核层上,并在氮气过压下冷却衬底。
摘要:
A light emitting diode (LED) having a p-type layer having a thickness of 100 nm or less, an n-type layer, and an active layer, positioned between the p-type layer and the n-type layer, for emitting light, wherein the LED does not include a separate electron blocking layer.
摘要:
An (Al, Ga, In)N light emitting diode (LED), wherein light extraction from chip and/or phosphor conversion layer is optimized. By novel shaping of LED and package optics, a high efficiency light emitting diode is achieved.
摘要:
A method of device growth and p-contact processing that produces improved performance for non-polar III-nitride light emitting diodes and laser diodes. Key components using a low defect density substrate or template, thick quantum wells, a low temperature p-type III-nitride growth technique, and a transparent conducting oxide for the electrodes.
摘要:
An (Al, Ga, In)N light emitting diode (LED) in which multi-directional light can be extracted from one or more surfaces of the LED before entering a shaped optical element and subsequently being extracted to air. In particular, the (Al, Ga, In)N and transparent contact layers (such as ITO or ZnO) are embedded in or combined with a shaped optical element, which may be an epoxy, glass, silicon or other material molded into a sphere or inverted cone shape, wherein most of the light entering the inverted cone shape lies within a critical angle and is extracted. The present invention also minimizes internal reflections within the LED by eliminating mirrors and/or mirrored surfaces, in order to minimize re-absorption of the LED's light by the emitting layer (or the active layer) of the LED. To assist in minimizing internal reflections, transparent electrodes, such as ITO or ZnO, may be used. Surface roughening by patterning or anisotropically etching (i.e., creating microcones) may also assist in light extraction, as well as minimizing internal reflections.