Abstract:
System and method for operating a material deposition system are disclosed. In one embodiment, the method can include periodically injecting a precursor into a vaporizer through an injector at the vaporizer, vaporizing the precursor in the vaporizer and supplying the vaporized precursor to a reaction chamber in fluid communication with the vaporizer, and shutting down the vaporizer and the reaction chamber after a period of time. The method can also include conducting maintenance of the injector at the vaporizer by using a vapor solvent rinse.
Abstract:
A method of forming a metal chalcogenide material. The method comprises introducing a metal precursor and a chalcogenide precursor into a chamber, and reacting the metal precursor and the chalcogenide precursor to form a metal chalcogenide material on a substrate. The metal precursor is a carboxylate of an alkali metal, an alkaline earth metal, a transition metal, a post-transition metal, or a metalloid. The chalcogenide precursor is a hydride, alkyl, or aryl precursor of sulfur, selenium, or tellurium or a silylhydride, silylalkyl, or silylaryl precursor of sulfur, selenium, or tellurium. Methods of forming a memory cell including the metal chalcogenide material are also disclosed, as are memory cells including the metal chalcogenide material.
Abstract:
Resistive memory having confined filament formation is described herein. One or more method embodiments include forming an opening in a stack having a silicon material and an oxide material on the silicon material, and forming an oxide material in the opening adjacent the silicon material, wherein the oxide material formed in the opening confines filament formation in the resistive memory cell to an are enclosed by the oxide material formed in the opening.
Abstract:
Horizontally oriented and vertically stacked memory cells are described herein. One or more method embodiments include forming a vertical stack having a first insulator material, a first memory cell material on the first insulator material, a second insulator material on the first memory cell material, a second memory cell material on the second insulator material, and a third insulator material on the second memory cell material, forming an electrode adjacent a first side of the first memory cell material and a first side of the second memory cell material, and forming an electrode adjacent a second side of the first memory cell material and a second side of the second memory cell material.
Abstract:
Horizontally oriented and vertically stacked memory cells are described herein. One or more method embodiments include forming a vertical stack having a first insulator material, a first memory cell material on the first insulator material, a second insulator material on the first memory cell material, a second memory cell material on the second insulator material, and a third insulator material on the second memory cell material, forming an electrode adjacent a first side of the first memory cell material and a first side of the second memory cell material, and forming an electrode adjacent a second side of the first memory cell material and a second side of the second memory cell material.
Abstract:
A vapor deposition system includes a deposition chamber having a substrate positioned therein. The system includes at least one vessel containing at least one silsesquioxane precursor. The system includes at least one vessel containing at least one wetting agent or surfactant. The system includes at least one vessel containing a carboxylic acid or nitrogen base. The system includes a source for at least one reaction gas.
Abstract:
Isolated conductive nanoparticles on a dielectric layer and methods of fabricating such isolated conductive nanoparticles provide charge storage units in electronic structures for use in a wide range of electronic devices and systems. The isolated conductive nanoparticles may be used as a floating gate in a flash memory. In an embodiment, conductive nanoparticles are deposited on a dielectric layer by a plasma-assisted deposition process such that each conductive nanoparticle is isolated from the other conductive nanoparticles to configure the conductive nanoparticles as charge storage elements.
Abstract:
Resistive memory having confined filament formation is described herein. One or more method embodiments include forming an opening in a stack having a silicon material and an oxide material on the silicon material, and forming an oxide material in the opening adjacent the silicon material, wherein the oxide material formed in the opening confines filament formation in the resistive memory cell to an area enclosed by the oxide material formed in the opening.
Abstract:
Methods for fabricating sub-lithographic, nanoscale linear microchannel arrays over surfaces without defined features utilizing self-assembling block copolymers, and films and devices formed from these methods are provided. Embodiments of the methods use a multi-layer induced ordering approach to align lamellar films to an underlying base film within trenches, and localized heating to anneal the lamellar-phase block copolymer film overlying the trenches and outwardly over the remaining surface.
Abstract:
A semiconductor structure including nanotubes forming an electrical connection between electrodes is disclosed. The semiconductor structure may include an open volume defined by a lower surface of an electrically insulative material and sidewalls of at least a portion of each of a dielectric material and opposing electrodes. The nanotubes may extend between the opposing electrodes, forming a physical and electrical connection therebetween. The nanotubes may be encapsulated within the open volume in the semiconductor structure. A semiconductor structure including nanotubes forming an electrical connection between source and drain regions is also disclosed. The semiconductor structure may include at least one semiconducting carbon nanotube electrically connected to a source and a drain, a dielectric material disposed over the at least one semiconducting carbon nanotube and a gate dielectric overlying a portion of the dielectric material. Methods of forming the semiconductor structures are also disclosed.