Abstract:
A method of producing a light-emitting arrangement includes providing a carrier including a top side, attaching a multitude of first conversion elements on the top side of the carrier, wherein the first conversion elements are arranged in a lateral direction spaced apart from one another, attaching an encapsulation on the top side of the carrier, wherein the encapsulation covers the carrier and the first conversion elements at least sectionally, removing the encapsulation in regions between the first conversion elements, and attaching optoelectronic semiconductor chips between the first conversion elements.
Abstract:
An optoelectronic semiconductor component and a method for producing the same are disclosed. In an embodiment the semiconductor component includes a semiconductor chip, which emits electromagnetic radiation of a first wavelength range from a radiation emission surface. The semiconductor component further includes a first conversion layer located on a lateral flank of the semiconductor chip, wherein the first conversion layer is suitable for converting electromagnetic radiation of the first wavelength range into electromagnetic radiation of a second wavelength range, and a second conversion layer located on the radiation emission surface of the semiconductor chip, wherein the second conversion layer is suitable for converting electromagnetic radiation of the first wavelength range into electromagnetic radiation of the second or of a third wavelength range. The first conversion layer is different from the second conversion layer.
Abstract:
An optoelectronic semiconductor component includes one or more light-emitting diode chips. The light-emitting diode chip has a main radiation side. A diaphragm is arranged downstream of the main radiation side along a main radiation direction of the light-emitting diode chip. The diaphragm is mounted on or in a component housing. The main radiation side has a mean edge length of at least 50 μm. The diaphragm can be switched from light-impervious to light-pervious. The diaphragm comprises precisely one opening region for radiation transmission. The semiconductor component can be used as a flashlight for a mobile image recording device.
Abstract:
An optoelectronic component can be used for mixing electromagnetic radiation having different wavelengths, in particular in the far field. The optoelectronic component includes a carrier. A first semiconductor chip has a first radiation exit surface for emitting electromagnetic radiation in a first spectral range is provided on the carrier and a second semiconductor chip as a second radiation exit surface for emitting electromagnetic radiation in a second spectral range is provided on the carrier. A diffusing layer is provided on the radiation exit surfaces of the semiconductor chips which face away from the carrier.
Abstract:
An optoelectronic semiconductor component includes a light-emitting semiconductor body having a radiation side, a current expansion layer arranged on the radiation side of the semiconductor body and at least partially covers this side, wherein the current expansion layer includes an electrically-conductive material transparent to the light radiated by the semiconductor body, and particles of a further material, and an electrical contact arranged on a side of the current expansion layer facing away from the semiconductor body.
Abstract:
A light source is disclosed. In an embodiment a light source includes at least one first semiconductor emitter for generating first light, at least one second semiconductor emitter for generating second light, the second light having a different color than the first light, a light mixing body configured to produce a mixed light from the first and second lights and a detector on the light mixing body, the detector configured to determine a color locus of the mixed light, wherein the first and second semiconductor emitters are arranged along a line and have different distances from the detector, wherein the light mixing body is arranged on side surfaces of the first and second semiconductor emitters and in projection onto the side surfaces at least partially covers each of the side surfaces, so that the detector receives light from each of the first and second semiconductor emitters through the light mixing body.
Abstract:
An optoelectronic semiconductor component includes a light-emitting semiconductor body having a radiation side, a current expansion layer arranged on the radiation side of the semiconductor body and at least partially covers this side, wherein the current expansion layer includes an electrically-conductive material transparent to the light radiated by the semiconductor body, and particles of a further material, and an electrical contact arranged on a side of the current expansion layer facing away from the semiconductor body.
Abstract:
The invention relates to a light-emitting semiconductor component, comprising—a first semiconductor body (1), which comprises an active zone (11) in which during the operation of the light-emitting semiconductor component electromagnetic radiation is generated, at least some of which leaves the first semiconductor body (1) through a radiation exit surface (1a), and—a second semiconductor body (2), which is suitable for converting the electromagnetic radiation into converted electromagnetic radiation having a longer wavelength, wherein—the first semiconductor body (1) and the second semiconductor body (2) are produced separately from each other,—the second semiconductor body (2) is electrically inactive, and—the second semiconductor body (2) is in direct contact with the radiation exit surface (1a) and is attached there to the first semiconductor body (1) without connecting means.
Abstract:
An optoelectronic component includes an optoelectronic semiconductor chip having a radiation-emitting face; and an optical element arranged over the radiation-emitting face, wherein the optical element includes a material in which light-scattering particles are embedded, and a concentration of the embedded light-scattering particles has a gradient forming an angle not equal to 90° with the radiation emission face.
Abstract:
An optoelectronic semiconductor device includes at least one radiation-emitting and/or radiation-receiving semiconductor chip including a radiation passage surface and a mounting surface opposite the radiation passage surface, wherein the mounting surface includes a first electrical contact structure and a second electrical contact structure electrically insulated from the first electrical contact structure, and wherein the radiation passage surface is free of contact structures, a reflective sheath surrounding the at least one semiconductor chip at least in sections, and a protective sheath surrounding the at least one semiconductor chip and/or the reflective sheath at least in sections.