Abstract:
A semiconductor memory device includes a control logic and a memory cell array in which a plurality of memory cells are arranged. The memory cell array includes a plurality of bank arrays, and each of the plurality of bank arrays includes a plurality of sub-arrays. The control logic controls an access to the memory cell array based on a command and an address signal. The control logic dynamically sets a keep-away zone that includes a plurality of memory cell rows which are deactivated based on a first word-line when the first word-line is enabled. The first word-line is coupled to a first memory cell row of a first sub-array of the plurality of sub-arrays. Therefore, increased timing parameters may be compensated, and parallelism may be increased.
Abstract:
A semiconductor memory device includes a memory cell array and a control logic. The memory cell array includes first and second sub arrays, the first sub array includes a first set of bank arrays, and the second sub array includes a second set of bank arrays. Each of the upper and lower bank arrays includes first and second portions having different timing parameters with respect to each other. The control logic controls access to the first and second portions such that read/write operation is performed on the first and second portions.
Abstract:
A memory device includes a memory having a memory bank, a processor in memory (PIM) circuit, and control logic. The PIM circuit includes instruction memory storing at least one instruction provided from a host. The PIM circuit is configured to process an operation using data provided by the host or data read from the memory bank and to store at least one instruction provided by the host. The control logic is configured to decode a command/address received from the host to generate a decoding result and to perform a control operation so that one of i) a memory operation on the memory bank is performed and ii) the PIM circuit performs a processing operation, based on the decoding result. A counting value of a program counter instructing a position of the instruction memory is controlled in response to the command/address instructing the processing operation be performed.
Abstract:
A neuromorphic device includes a memory cell array that includes first memory cells corresponding to a first address and storing first weights and second memory cells corresponding to a second address and storing second weights, and a neuron circuit that includes an integrator summing first read signals from the first memory cells and an activation circuit outputting a first activation signal based on a first sum signal of the first read signals output from the integrator.
Abstract:
A memory system includes a memory device including memory banks and a data bus management circuit and a host coupled to the memory device. The host includes a memory controller detecting at least one trigger initiated by at least one application for performing at least one operation on data stored within the memory device, the at least one operation including at least one of a data copy operation, and a data processing operation, and performing the at least one operation on the data within the memory device by enabling movement of the data between the data bus management circuit of the memory device and at least one memory bank of the memory banks, without exchanging the data with the host, using at least one buffer fill command and at least one buffer copy command.
Abstract:
A memory device includes a memory cell array, signal lines, a mode selector circuit, a command converter circuit, and an internal processor. The memory cell array includes first and second memory regions. The mode selector circuit is configured to generate a processing mode selection signal for controlling the memory device to enter an internal processing mode based on the address received together with the command. The command converter circuit is configured to convert the received command into an internal processing operation command in response to activation of the internal processing mode selection signal. The internal processor is configured to perform an internal processing operation on the first memory region in response to the internal processing operation command, in the internal processing mode.
Abstract:
A stacked memory includes a logic semiconductor die, a plurality of memory semiconductor dies stacked with the logic semiconductor die, a plurality of through-silicon vias (TSVs) electrically connecting the logic semiconductor die and the memory semiconductor dies, a global processor disposed in the logic semiconductor die and configured to perform a global sub process corresponding to a portion of a data process, a plurality of local processors respectively disposed in the memory semiconductor dies and configured to perform local sub processes corresponding to other portions of the data process and a plurality of memory integrated circuits respectively disposed in the memory semiconductor dies and configured to store data associated with the data process.
Abstract:
A test method of the semiconductor memory device including a memory cell array and an anti-fuse array includes detecting failed cells included in the memory cell array; determining a fail address corresponding to the detected failed cells; storing the determined fail address in a first region of the memory cell array; and reading the fail address stored in the first region to program the read fail address in the anti-fuse array. According to the test method of a semiconductor memory device and the semiconductor memory system, since the test operation can be performed without an additional memory for storing an address, the semiconductor memory device and the test circuit can be embodied by a small area.
Abstract:
In a method of refreshing in a memory device having a plurality of pages, a candidate refresh address corresponding to a page scheduled to be refreshed after a monitoring period is generated. Whether an active command is processed for the candidate refresh address is monitored during the monitoring period. If an active command is processed for the candidate refresh address during the monitoring period, the scheduled refresh for that page is skipped. If no active command is processed for the candidate refresh address during the monitoring period, the scheduled refresh operation is performed.
Abstract:
In one example embodiment, a memory system includes a memory module and a memory controller. The memory module is configured generate density information of the memory module based on a number of the bad pages of the memory module, the bad pages being pages that have a fault. The memory controller is configured to map a continuous physical address to a dynamic random access memory (dram) address of the memory module based on the density information received from the memory module.