Abstract:
A first data set is written to first memory units identified as having a higher data reliability and a second data set is written to second memory units identified as having a lower data reliability than the first memory units. In some cases, the second data set may include metadata or redundancy information that is useful to aid in reading and/or decoding the first data set. The act of writing the second data set increases the data reliability of the first data set. The second data set may be a null pattern, such as all erased bits.
Abstract:
Threshold voltage offsets for threshold voltages are determined. The threshold voltage offsets may be linearly related by a non-zero slope. The threshold voltages are shifted using their respective threshold voltage offsets. The threshold voltages that are shifted by their respective threshold voltage offsets are used to read data from multi-level memory cells.
Abstract:
A memory controller identifies a predominant type of error of a memory unit of solid state memory cells. An error type differential is calculated. The error type differential is a difference between a number of charge loss errors and a number of charge gain errors of the memory unit. A VT offset error differential is calculated. The VT offset error differential is a difference between a number of errors of the predominant type at a first VT offset and a number of errors of the predominant type at a second VT offset. A VT offset is determined using a ratio of the error type differential and the VT offset error differential.
Abstract:
Memory arrays that include a first memory cell having a channel; a first insulator; a floating gate; a second insulator; and a control gate, wherein the first insulator is positioned between the channel and the floating gate, the second insulator is positioned between the floating gate and the control gate; and a second memory cell having a channel; a first insulator; a floating gate; a second insulator; and a control gate, wherein the first insulator is positioned between the channel and the floating gate, the second insulator is positioned between the floating gate and the control gate, wherein the first memory cell and the second memory cell are positioned parallel to each other.
Abstract:
A memory device includes a stack of layers comprising a plurality of alternating layers of continuous electrically conductive material word line layers with layers of continuous electrically insulating material. A plurality of vias vertically extend through the stack of layers and a vertical bit line is disposed within each via. A layer of switching material separates the vertical bit line from the stack of layers, thereby forming an array of RRAM cells.
Abstract:
A fault tolerant control line configuration useful in a variety of solid state memories such as but not limited to a flash memory. In accordance with some embodiments, an apparatus includes a plurality of memory cells, and a fault tolerant control line. The control line has an elongated first conductive path connected to each of the plurality of memory cells. An elongated second conductive path is disposed in a parallel, spaced apart relation to the first conductive path. A plurality of conductive support members are interposed between the first and second conductive paths to support the second conductive path above the first conductive path.
Abstract:
Method and apparatus for managing data in a memory, such as a flash memory array. In accordance with some embodiments, data are written to a set of solid-state non-volatile memory cells so that each memory cell in the set is written to an associated initial programmed state. Drift in the programmed state of a selected memory cell in the set is detected, and the selected memory cell is partially reprogrammed to return the selected memory cell to the associated initial programmed state.
Abstract:
Method and apparatus for managing data in a memory, such as a flash memory array. In accordance with various embodiments, a first data access operation is conducted on a memory cell and a first temperature associated with the memory cell and associated with the first data access operation is measured. A second temperature associated with the memory cell is measured. At least one operational parameter is adjusted responsive to the first and second temperatures associated with the memory cell. A second data access operation is conducted on the memory cell using the adjusted operational parameter.
Abstract:
Methods and systems that include receiving data to be written to a NAND array in a controller; and writing the data to the NAND array, the NAND array including both type A NAND cells and type B NAND cells, wherein the type A NAND cells and the type B NAND cells have at least one structural difference.
Abstract:
A memory device includes a stack of layers comprising a plurality of alternating layers of continuous electrically conductive material word line layers with layers of continuous electrically insulating material. A plurality of vias vertically extend through the stack of layers and a vertical bit line is disposed within each via. A layer of switching material separates the vertical bit line from the stack of layers, thereby forming an array of RRAM cells.