Abstract:
An integrated circuit chip cooling device includes a network of micropipes. A first pipe portion and a second pipe portion of the network are connected by at least one valve. The valve is formed of a bilayer strip. In response to change in temperature, the shape of the bilayer strip changes to move the valve from a substantially closed position to an open position. In one configuration, the change is irreversible. In another configuration, the change is reversible in response to an opposite change in temperature.
Abstract:
A memory cell including a via made of a phase-change material arranged between a lower electrode and an upper electrode, wherein the via includes a central region laterally surrounded with a peripheral region, the crystallization and melting temperatures of the central region being respectively lower than those of the peripheral region.
Abstract:
A memory cell including a via made of a phase-change material arranged between a lower electrode and an upper electrode, wherein the via includes a central region laterally surrounded with a peripheral region, the crystallization and melting temperatures of the central region being respectively lower than those of the peripheral region.
Abstract:
An assembly includes an integrated circuit chip and a plate with at least one heat removal channel arranged between the chip and the plate. Metal sidewalls are formed to extend from one surface of the chip to an opposite surface of the plate. The assembly is encapsulated in a body that includes an opening extending to reach the channel. The plate may be one of an interposer, an integrated circuit chip, a support of surface-mount type, or a metal plate.
Abstract:
A spectral filter includes an assembly of filtering cells. Each cell has a same nanostructured pattern and a preferential direction of the pattern. This preferential direction is, for each cell, oriented approximately radially with respect to a single point of the spectral filter. Alternatively, this preferential direction is, for each cell, oriented approximately ortho-radially with respect to the single point of the spectral filter. The single point may be a center point. Alternatively, the single point may correspond to an optical axis of a lens element associated with the spectral filter.
Abstract:
An assembly is made of an integrated circuit chip and a plate. At least one channel is arranged between the chip and the plate. The channel is delimited by metal sidewalls at least partially extending from one surface of the chip to an opposite surface of the plate. The assembly is encapsulated in a body that includes an opening extending to reach the channel. The plate may be one of an interposer, an integrated circuit chip, a support of surface-mount type, or a metal plate.
Abstract:
A proximity sensor includes a radiation source configured to emit a primary radiation beam and a primary detector configured to pick up a reflected primary radiation beam. The radiation source is further configured to emit stray radiation. The sensor further includes a reference detector arranged to receive the stray radiation. The stray radiation may, for example, be emitted from either a side of the radiation source or a bottom of the radiation source.
Abstract:
An assembly includes an integrated circuit chip and a plate with at least one heat removal channel arranged between the chip and the plate. Metal sidewalls are formed to extend from one surface of the chip to an opposite surface of the plate. The assembly is encapsulated in a body that includes an opening extending to reach the channel. The plate may be one of an interposer, an integrated circuit chip, a support of surface-mount type, or a metal plate.
Abstract:
A proximity sensor includes a radiation source configured to emit a primary radiation beam and a primary detector configured to pick up a reflected primary radiation beam. The radiation source is further configured to emit stray radiation. The sensor further includes a reference detector arranged to receive the stray radiation. The stray radiation may, for example, be emitted from either a side of the radiation source or a bottom of the radiation source.
Abstract:
An assembly is made of an integrated circuit chip and a plate. At least one channel is arranged between the chip and the plate. The channel is delimited by metal sidewalls at least partially extending from one surface of the chip to an opposite surface of the plate. The assembly is encapsulated in a body that includes an opening extending to reach the channel. The plate may be one of an interposer, an integrated circuit chip, a support of surface-mount type, or a metal plate.