Abstract:
An extruded blow molded bottle comprises a neck portion and a body portion. The body portion comprises a first inner layer and a second layer. The first inner layer comprises a first material selected from a group consisting of polyester, phenoxy type thermoplastics, phenoxy-polyolefin thermoplastic blends, and combinations thereof. The second layer comprises a second material selected from a group consisting of virgin PET, recycled PET, PETG, foam, polypropylene, polyester, polyolefins, phenoxy type thermoplastic, phenoxy-polyolefin thermoplastic blends, regrind scrap materials, and combinations thereof. The second material is different from the first material.
Abstract:
Blends of non-solid stated RPET and an amount of PEN and/or NDC less than about 10 percent by weight are used as at least one layer of an article, such as a container or a preform for blow molding a container, having an inner layer of a thermoplastic material. The addition of the small amount of PEN and/or NDC allows the direct use of RPET without solid stating, and provides articles having environmental stretch crack resistance, color, and organoleptic properties comparable to that of virgin PET.
Abstract:
A beverage container is disclosed which includes a stackable cup and a stackable cover which have cooperating thread forms for selectively securing the cover to the cup in a substantially liquid-tight relationship. The cover has a beverage dispensing opening and a cap which is selectively operable to open and close the opening to prevent beverage in the container from being poured out of the opening and to selectively allow beverage to be poured or drunk from the opening.
Abstract:
A polymer blend has a base and blend components. The base and blend components could be a branched slow crystallizing PET and a faster crystallizing PET, respectively. The ratio of base and blend components result in a block copolymer, the melt processing time and branching or chain extender levels can be can be tailored to impart the polymer blend with sufficient melt strength and crystallization rates, such that it is slow enough during the blow molding process to produce a clear article and yet fast enough during the subsequent PET recycling process making it suitable for extrusion processes as well as for recycling. The combination of materials can be used to form monolayer or multilayer articles.
Abstract:
A polymer blend has a base and blend components. The base and blend components could be a branched slow crystallizing PET and a faster crystallizing PET, respectively. The ratio of base and blend components result in a block copolymer, the melt processing time and branching or chain extender levels can be can be tailored to impart the polymer blend with sufficient melt strength and crystallization rates, such that it is slow enough during the blow molding process to produce a clear article and yet fast enough during the subsequent PET recycling process making it suitable for extrusion processes as well as for recycling. The combination of materials can be used to form monolayer or multilayer articles.
Abstract:
Disclosed herein are sheets, labels, label stock, and articles comprising the same. Additionally disclosed are method for making the sheets, labels, label stock, and articles comprising the same. In some embodiments, the sheets, labels, and label stock comprise one or more layers, wherein at least one layer comprises microspheres. In some embodiments, the sheets, labels, and label stock comprise one or more layers of a foam material. In some embodiments, one or more layers comprise a cellulose material.
Abstract:
Plastic multi-piece containers for storing beverages and other foodstuff are disclosed. In addition, methods, devices and systems for making some or all components of such containers are disclosed. In some embodiments, the cup portion is manufactured using vacuum and/or pressure thermoforming methods. However, a cup portion of the container can be manufactured by any other suitable process, including, but not limited to, other forms of thermoforming, extrusion, compression molding, injection molding, blow molding and/or combinations thereof. The formed product can include one or more coupling structures for attachment of a closure member. A closure member can engage and/or couple to the cup portion to provide a water-tight and/or air-tight two-piece or multi-piece container. In some embodiments, a removable sealing member can be provided between the cup portion and a closure member.
Abstract:
Coated articles may comprise one or more coating layers, including water resistant coatings. A method comprises applying such coating layers by treating the article substrate by one or more methods selected from flame treatment, corona treatment, ionized air treatment, plasma air treatment and plasma arc treatment and dip, spray or flow coating. Additionally, a method comprises injection molding a first substrate material to form an article, treating the article surface by one or more methods selected from flame treatment, corona treatment, ionized air treatment, plasma air treatment and plasma arc treatment, and overmolding the article substrate with one or more barrier materials.
Abstract:
Articles are coated by applying a coating composition of a high Tg phenoxy-type material having a Tg of at least about 75° C. to at least a portion of a surface of an article, and forming a dried/cured coating of the high Tg phenoxy-type material on the article surface, where the coating has the high Tg phenoxy-type material and a PHAE; or the article surface comprises a coating includes a PHAE; or the coating has the high Tg phenoxy-type material and a PHAE, and the article surface includes a coating layer of a PHAE.
Abstract:
Coated articles are formed by applying a first aqueous solution or dispersion of a thermoplastic resin on a surface of an article and at least one IR curing catalyst to form a film, where at least a portion of the first aqueous solution or dispersion is a thermoplastic epoxy resin. The film is exposed to IR radiation in an amount sufficient to at least partially cure the film, and a substantially cured and/or dried thermoplastic epoxy coating is formed.