Abstract:
A nonvolatile memory device includes a cell string having a plurality of memory cells connected to one bit line. A page buffer is connected to the bit line via a sensing node and connected to the cell string via the bit line. The page buffer includes a first latch for storing bit line setup information and a second latch for storing forcing information. The first latch is configured to output the bit line setup information to the sensing node, and the second latch is configured to output the forcing information to the sensing node independently of the first latch.
Abstract:
Disclosed are a program method and a nonvolatile memory device. The method includes receiving program data to be programmed in memory cells; reading the memory cells to judge an erase state and at least one program state; performing a state read operation in which the at least one program state is read using a plurality of state read voltages; and programming the program data in the memory cells using a plurality of verification voltages having different levels according to a result of the state read operation. Also disclosed are methods using a plurality of verification voltages selected based on factors which may affect a threshold voltage shift or other characteristic representing the data of a memory cell after programming.
Abstract:
A three-dimensional semiconductor memory device may include a first stack structure block including first stack structures arranged in a first direction on a substrate, a second stack structure block including second stack structures arranged in the first direction on the substrate, a separation structure disposed on the substrate between the first and second stack structure blocks and including first mold layers and second mold layers, and a contact plug penetrating the separation structure. A bottom surface of the contact plug may contact the substrate.
Abstract:
A storage device includes a nonvolatile memory device and a controller. The controller provides the nonvolatile memory device with first data, an address, and a program start command and provides the nonvolatile memory device with second data after the program start command is provided the nonvolatile memory device. The nonvolatile memory device is configured to initiate a program operation, which is based on the first data, in response to the program start command and to continue to perform, based on the first data and the second data, the program operation when the second data is provided to the nonvolatile memory device. The nonvolatile memory device is configured to perform a program and a verification read of a first program loop based on the first data, the verification read of the first program loop being performed using one verification voltage.
Abstract:
A non-volatile memory device comprises a memory cell region including a first metal pad, a peripheral circuit region including a second metal pad and vertically connected to the memory cell region by the first metal pad and the second metal pad, a memory cell array in the memory cell region including a plurality of memory cells, each of the memory cells being connected to a plurality of word lines in the memory cell region and a plurality of bit lines in the memory cell region, and a control logic circuit in the peripheral circuit region configured to control voltages to be applied to the plurality of word lines and the plurality of bit lines.
Abstract:
The present disclosure relates to a 5G or pre-5G communication system that will be provided to support a higher data transmission rate beyond a 4G communication system such as LTE. Disclosed is an interference measurement method and device in a flexible duplex system. The method comprises the steps of: determining whether uplink (UL) grant for allocating UL transmission has been received from a base station in a first subframe; when the UL grant has not been received, measuring inter-cell interference for an uplink interference measurement resource (IMR) in at least one second subframe determined by the first subframe; and when the UL grant has been received, measuring inter-cell interference for the uplink interference measurement resource (IMR) in at least one third subframe before a subframe that is indicated by the UL grant.
Abstract:
A nonvolatile memory device includes a memory cell array and a bad block remapping circuit. The memory cell array includes a first mat and a second mat that are paired with each other. The first mat includes a plurality of first memory blocks. The second mat includes a plurality of second memory blocks. A first selection memory block among the plurality of first memory blocks and a second selection memory block among the plurality of second memory blocks are accessed based on a first address. The bad block remapping circuit generates a first remapping address based on the first address when it is determined that the first selection memory block is defective. A first remapping memory block among the plurality of first memory blocks and the second selection memory block are accessed based on the first remapping address.
Abstract:
A word line driving method is for a nonvolatile memory device including a plurality of memory blocks having a plurality of strings which is formed in a direction perpendicular to a substrate and connected between bit lines and a common source line. The method includes applying an offset pulse to a word line for a predetermined time to shorten a word line setting time, and applying a target pulse having a level which is higher or lower than a level of the offset pulse to the word line after the predetermined time.
Abstract:
A memory device includes a memory cell array, a reference generating circuit, a row decoding circuit that is connected to the memory cell array through word lines, a page buffer circuit that is connected to the memory cell array through bit lines, a data input/output circuit that is connected to the page buffer circuit through a data line, a buffer circuit, a control logic circuit that performs logic sequences, based on the internal clock signal and the internal power, and a test mode circuit. When the memory device enters a test mode, the test mode circuit disables a part of components of the reference generating circuit. In the test mode, the control logic circuit performs the logic sequences by using an external clock signal provided from an external device.
Abstract:
A non-volatile memory device includes a memory cell array including a plurality of cell strings, each of the plurality of cell strings includes a gate-induced drain leakage (GIDL) transistor and a memory cell group, and a control logic to apply a voltage to each of the plurality of cell strings. The control logic performs a first erase operation of erasing the memory cell groups of each of the plurality of cell strings, a first verification operation of detecting erase results of the memory cell groups of each of the plurality of cell strings, and a program operation of programming the GIDL transistors of some of the plurality of cell strings.