Abstract:
A substrate structure is provided, which includes a substrate body having a plurality of conductive pads, and a plurality of first conductive bumps and a plurality of second conductive bumps disposed on the conductive pads. Each of the second conductive bumps is less in width than each of the first conductive bumps, and is of a height with respect to the substrate body greater than a height of each of the first conductive bumps with respect to the substrate body. Therefore, the height difference between the first pre-solder layer and the second pre-solder layer after a reflow process can be compensated, and the first conductive bumps and the second conductive bumps thus have a uniform height.
Abstract:
A fabrication method of a wafer level semiconductor package includes: forming on a carrier a first dielectric layer having first openings exposing portions of the carrier; forming a circuit layer on the first dielectric layer, a portion of the circuit layer being formed in the first openings; forming on the first dielectric layer and the circuit layer a second dielectric layer having second openings exposing portions of the circuit layer; forming conductive bumps in the second openings; mounting a semiconductor component on the conductive bumps; forming an encapsulant for encapsulating the semiconductor component; and removing the carrier to expose the circuit layer. By detecting the yield rate of the circuit layer before mounting the semiconductor component, the invention avoids discarding good semiconductor components together with packages as occurs in the prior art, thereby saving the fabrication cost and improving the product yield.
Abstract:
A semiconductor package includes a build-up structure; a semiconductor disposed on the build-up structure in a flip-chip manner and having a plurality of bumps penetrating therethrough; an electronic element disposed on the semiconductor chip; and an encapsulant formed on the build-up structure and encapsulating the semiconductor chip and the electronic element, thereby improving the product yield and the overall heat dissipating efficiency.
Abstract:
An electronic package is provided, which includes: a circuit structure having opposite first and second surfaces; a metal layer formed on the first surface of the circuit structure; an electronic element disposed on the metal layer; an encapsulant encapsulating the electronic element; a plurality of conductive posts disposed on the second surface of the circuit structure; and an insulating layer encapsulating the conductive posts. The conductive posts of various sizes can be fabricated according to different aspect ratio requirements so as to make end products lighter, thinner, shorter and smaller. The disclosure further provides a method for fabricating the electronic package.
Abstract:
An electronic package is provided, which includes: a circuit structure having opposite first and second surfaces; a metal layer formed on the first surface of the circuit structure; an electronic element disposed on the metal layer; an encapsulant encapsulating the electronic element; a plurality of conductive posts disposed on the second surface of the circuit structure; and an insulating layer encapsulating the conductive posts. The conductive posts of various sizes can be fabricated according to different aspect ratio requirements so as to make end products lighter, thinner, shorter and smaller. The disclosure further provides a method for fabricating the electronic package.
Abstract:
An electronic package is provided, which includes: a circuit structure having opposite first and second surfaces; a metal layer formed on the first surface of the circuit structure; an electronic element disposed on the metal layer; an encapsulant encapsulating the electronic element; a plurality of conductive posts disposed on the second surface of the circuit structure; and an insulating layer encapsulating the conductive posts. The conductive posts of various sizes can be fabricated according to different aspect ratio requirements so as to make end products lighter, thinner, shorter and smaller. The disclosure further provides a method for fabricating the electronic package.
Abstract:
An electronic package is provided, including: a circuit structure having opposite first and second surfaces, wherein first and second circuit layers are formed on the first and second surfaces of the circuit structure, respectively, the first circuit layer having a minimum trace width less than that of the second circuit layer; a separation layer formed on the first surface of the circuit structure; a metal layer formed on the separation layer and electrically connected to the first circuit layer; an electronic element disposed on the first surface of the circuit structure and electrically connected to the metal layer; and an encapsulant formed on the circuit structure to encapsulate the electronic element. By disposing the electronic element having high I/O function on the circuit structure, the invention eliminates the need of a packaging substrate having a core layer and thus reduces the thickness of the electronic package.
Abstract:
An electronic package is provided, which includes: a first circuit structure; a plurality of first electronic elements disposed on a surface of the first circuit structure; at least a first conductive element formed on the surface of the first circuit structure; and a first encapsulant formed on the surface of the first circuit structure and encapsulating the first electronic elements and the first conductive element, with a portion of the first conductive element exposed from the first encapsulant. By directly disposing the electronic elements having high I/O functionality on the circuit structure, the present disclosure eliminates the need of a packaging substrate having a core layer, thereby reducing the thickness of the electronic package. The present disclosure further provides a method for fabricating the electronic package.
Abstract:
The present invention provides a semiconductor package and a method of fabricating the same, including: placing in a groove of a carrier a semiconductor element having opposing active and non-active surfaces, and side surfaces abutting the active surface and the non-active surface; applying an adhesive material in the groove and around a periphery of the side surfaces of the semiconductor element; forming a dielectric layer on the adhesive material and the active surface of the semiconductor element; forming on the dielectric layer a circuit layer electrically connected to the semiconductor element; and removing a first portion of the carrier below the groove to keep a second portion of the carrier on a side wall of the groove intact for the second portion to function as a supporting member. The present invention does not require formation of a silicon interposer, and therefore the overall cost of a final product is much reduced.
Abstract:
An electronic package is provided, including: a circuit structure having opposite first and second surfaces, wherein first and second circuit layers are formed on the first and second surfaces of the circuit structure, respectively, the first circuit layer having a minimum trace width less than that of the second circuit layer; a separation layer formed on the first surface of the circuit structure; a metal layer formed on the separation layer and electrically connected to the first circuit layer; an electronic element disposed on the first surface of the circuit structure and electrically connected to the metal layer; and an encapsulant formed on the circuit structure to encapsulate the electronic element. By disposing the electronic element having high I/O function on the circuit structure, the invention eliminates the need of a packaging substrate having a core layer and thus reduces the thickness of the electronic package.