Abstract:
Described herein are III-N (e.g. GaN) devices having a stepped cap layer over the channel of the device, for which the III-N material is orientated in an N-polar orientation.
Abstract:
A method of fabricating a III-nitride semiconductor device, including growing an III-nitride semiconductor and an oxide sequentially to form an oxide/III-nitride interface, without exposure to air in between growth of the oxide and growth of the III-nitride semiconductor.
Abstract:
The disclosure describes the use of strain to enhance the properties of p- and n-materials so as to improve the performance of III-N electronic and optoelectronic devices. In one example, transistor devices include a channel aligned along uniaxially strained or relaxed directions of the III-nitride material in the channel. Strain is introduced using buffer layers or source and drain regions of different composition
Abstract:
Described herein are III-N (e.g. GaN) devices having a stepped cap layer over the channel of the device, for which the III-N material is orientated in an N-polar orientation.
Abstract:
An optoelectronic or electronic device structure, including an active region on or above a polar substrate, wherein the active region comprises a polar p region. The device structure further includes a hole supply region on or above the active region. Holes in the hole supply region are driven by a field into the active region, the field arising at least in part due to a piezoelectric and/or spontaneous polarization field generated by a composition and grading of the active region.
Abstract:
A substrate comprising a III-N base layer comprising a first portion and a second portion, the first portion of the III-N base layer having a first natural lattice constant and a first dislocation density; and a first III-N layer having a second natural lattice constant and a second dislocation density on the III-N base layer, the first III-N layer having a thickness greater than 10 nm. An indium fractional composition of the first III-N layer is greater than 0.1; the second natural lattice constant is at least 1% greater than the first natural lattice constant; a strain-induced lattice constant of the first III-N layer is greater than 1.0055 times the first natural lattice constant; and the second dislocation density is less than 1.5 times the first dislocation density.
Abstract:
An optoelectronic or electronic device structure, including an active region on or above a polar substrate, wherein the active region comprises a polar p region. The device structure further includes a hole supply region on or above the active region. Holes in the hole supply region are driven by a field into the active region, the field arising at least in part due to a piezoelectric and/or spontaneous polarization field generated by a composition and grading of the active region.
Abstract:
Trenched vertical power field-effect transistors with improved on-resistance and/or breakdown voltage are fabricated. In one or more embodiments, the modulation of the current flow of the transistor occurs in the lateral channel, whereas the voltage is predominantly held in the vertical direction in the off-state. When the device is in the on-state, the current is channeled through an aperture in a current-blocking region after it flows under a gate region into the drift region. In another embodiment, a novel vertical power low-loss semiconductor multi-junction device in III-nitride and non-III-nitride material system is provided. One or more multi-junction device embodiments aim at providing enhancement mode (normally-off) operation alongside ultra-low on resistance and high breakdown voltage.
Abstract:
A method of fabricating a heterostructure device, including (a) obtaining a first layer or substrate; (b) growing a second layer on the first layer or substrate; and (c) forming the second layer that is at least partially relaxed wherein (1) the first layer and the second layer have the same lattice structure but different lattice constants, (2) the first layer and the second layer form a heterojunction, and (3) the heterojunction forms an active area of a device or serves as a pseudo-substrate for the device.
Abstract:
A method for growing high mobility, high charge Nitrogen polar (N-polar) or Nitrogen face (In,Al,Ga)N/GaN High Electron Mobility Transistors (HEMTs). The method can provide a successful approach to increase the breakdown voltage and reduce the gate leakage of the N-polar HEMTs, which has great potential to improve the N-polar or N-face HEMTs' high frequency and high power performance.