Abstract:
An integrated plant to generate chemical grade syngas from a steam biomass reforming in a multiple stage bio reforming reactor for use with either a high temperature or low temperature Fischer-Tropsch synthesis process to produce fuel from biomass is discussed. The first stage has a reactor to cause a chemical devolatilization of a biomass feedstock from the biomass feedstock supply lines into its constituent gases of CO, H2, CO2, CH4, tars, chars, and other components into a raw syngas mixture. A second stage performs further reforming of the raw syngas from the first stage into the chemical grade syngas by further applying heat and pressure to chemically crack at least the tars, reform the CH4, or a combination of both, into their corresponding syngas molecules. The second stage feeds the chemical grade syngas derived from the biomass feedstock to the downstream Fischer-Tropsch train to produce the fuel from the biomass. One or more recycle loops supply tail gas or FT product back into the plant.
Abstract:
Herein disclosed is a system for producing an organic, the system including at least one high shear mixing device having at least one rotor and at least one stator separated by a shear gap, wherein the shear gap is the minimum distance between the at least one rotor and the at least one stator; a pump configured for delivering a fluid stream comprising liquid medium and light gas to the at least one high shear mixing device, wherein the at least one high shear mixing device is configured to form a dispersion of the light gas in the liquid medium; and a reactor comprising at least one inlet and at least one outlet, wherein the at least one inlet of the reactor is fluidly connected to the at least one high shear mixing device, and wherein the at least one outlet is configured for extracting the organic therefrom.
Abstract:
A coal co-gasification method, comprising the following steps: 1, fuel and a first pressurised oxygen-containing gas are injected into a gasifier, and the fuel is ignited so as to increase the temperature inside the gasifier; 2, when the temperature increase reaches a temperature capable of igniting powdered coal to be injected, injection of the fuel is stopped, injection of the first pressurised oxygen-containing gas is continued, and a pressurised carbon dioxide gas carrying the powdered coal to be injected is injected into the gasifier so as to perform powdered coal gasification; 3, once the powdered coal gasification has stabilised, coal-water slurry and an oxygen-containing gas are injected into the gasifier to perform co-gasification. The method operates stably, and overcomes cumbersome and time-consuming adjustment steps in the prior art.
Abstract:
A solids circulation system receives a gas stream containing char or other reacting solids from a first reactor. The solids circulation system includes a cyclone configured to receive the gas stream from the first reactor, a dipleg from the cyclone to a second reactor, and a riser from the second reactor which merges with the gas stream received by the cyclone. The second reactor has a dense fluid bed and converts the received materials to gaseous products. A conveying fluid transports a portion of the bed media from the second reactor through the riser to mix with the gas stream prior to cyclone entry. The bed media helps manipulate the solids that is received by the cyclone to facilitate flow of solids down the dipleg into the second reactor. The second reactor provides additional residence time, mixing and gas-solid contact for efficient conversion of char or reacting solids.
Abstract:
Improved two-stage entrained-flow gasification systems and processes that reduce the cost and complexity of the design and increase the reliability, while maintaining the efficiency by implementing a first chemical quench followed by a second water quench of the produced syngas. The quenched syngas is maintained above the condensation temperature of at least one condensable component of the syngas, allowing residual particulates to be removed by dry particulate filtration.
Abstract:
Facilities and processes for generating ethanol from municipal solid waste (MSW) in an economical way via generating a syngas, passing the syngas through a catalytic synthesis reactor, separating fuel grade ethanol, extracting energy at particular strategic points, and recycling undesired byproducts.
Abstract:
A method, apparatus, and system for a solar-driven chemical plant are disclosed. Some embodiments may include a solar thermal receiver to absorb concentrated solar energy from an array of heliostats and a solar-driven chemical reactor. This chemical reactor may have multiple reactor tubes, in which particles of biomass may be gasified in the presence of a carrier gas in a gasification reaction to produce hydrogen and carbon monoxide products. High heat transfer rates of the walls and tubes may allow the particles of biomass to achieve a high enough temperature necessary for substantial tar destruction and complete gasification of greater than 90 percent of the biomass particles into reaction products including hydrogen and carbon monoxide gas in a very short residence time between a range of 0.01 and 5 seconds.
Abstract:
A CO shift reaction apparatus 11 according to the present invention includes: adiabatic reactors 31A to 31C, each having CO shift catalyst layers 35A to 35C filled with a CO shift catalyst 34 which reforms CO in gasification gas 15; gas supply lines l11 to l15 which supply the gasification gas 15 to the adiabatic reactors 31A to 31C; first gas flow rate control units 32A and 32B which adjust the amounts of gas supplied to the adiabatic reactors 31A to 31C; gas discharge lines l21 to l25 which discharge processing gas; and second gas flow rate control unit 33A and 33B which adjust flow rates of processing gas 38A-1, 38A-2, 38B-1, and 38B-2.
Abstract:
A method of producing hydrogen from hydro-carbon feed material is disclosed. A cylindrical plasma reaction region having a temperature greater than 800 C is created in a cylindrical reaction chamber by a cylindrical plasma array. The feed material is introduced into the plasma, where it undergoes plasma pyrolysis and is separated into hydrogen gas and solid carbon. The hydrogen gas is further purified using a hydrogen sieve that allows hydrogen through but retards larger molecules. The hydrogen gas is then feed into a fuel cell where it mixes with oxygen to provide electrical power. The plasma array may have one or more angled plasma arcs such that the plasma reaction region rotates as a vortex. There may also be two or more cylindrical plasma arrays arranged parallel to each other and to the cylindrical reaction chamber such that the feed material is fed through them.
Abstract:
Improved two-stage entrained-flow gasification systems and processes that reduce the cost and complexity of the design and increase the reliability, while maintaining the efficiency by implementing a first chemical quench followed by a second water quench of the produced syngas. The quenched syngas is maintained above the condensation temperature of at least one condensable component of the syngas, allowing residual particulates to be removed by dry particulate filtration.