Abstract:
The present invention provides a microarray having a plurality of micro-locations for confining selected photophores, for example, biological molecules exhibiting fluorescence spectra. The microarray can further include an array of optoelectronic photodetectors each of which is optically coupled with at least one of the micro-locations to detect radiation, for example, fluorescence radiation, that is emitted from the photophores confined in that micro-location. Each photodetector includes a resonant cavity that is formed of a front reflector and/or a back reflector having distributed Bragg reflector structures and a photo-detecting element disposed in the resonant cavity. The microarray can utilize either external optical excitation sources, such as lasers, LEDs, or can contain its own excitation sources in an integrated structure containing both optical radiation emitters, such as, vertical cavity surface emitting lasers or resonant cavity LEDs, and resonant cavity photodetectors. The integrated emitters and detectors can be either coaxially or adjacently located. Further, the microarray can include either separate sample array and excitation/detector array plates, or a single sample/excitation/detector array plate in which the photophore-containing sample molecules can be deposited directly on the excitation/detector array.
Abstract:
In a method of photometric in vitro determination of the content of oxygen in a blood sample, a blood sample is transferred directly from an in vivo locality to an at least partially transparent sample container of a sampling device. The sample container has a measuring chamber containing a luminophor, the luminescence of which is quenched in the presence of oxygen. The luminophor is excited by irradiation with radiation from a radiation source. The luminescence emitted by the excited luminophor is detected by a radiation detector and the oxygen content determined on the basis of the radiation detected by the radiation detector. A sampling device and a system for photometric in vitro determination of oxygen in a blood sample are also described.
Abstract:
A method for identifying the presence or absence of an aggregation of particles distributed on a translucent surface includes the steps of providing a light sensing device for sensing light incident thereon and producing an output value which represents the intensity of the incident light, and identifying a first output value which is produced by the light sensing device when there is no light incident thereon. The method also identifies a second output value which is produced by the light sensing means when, with no particles present on the translucent surface, light is directed through the translucent surface onto the light sensing device. With a distribution of particles deposited on the translucent surface, light is directed through the translucent surface and onto the light sensing device, causing the light sensing device to produce a third output value. A final output value is then determined as a function of said first, second and third output values.
Abstract:
A photoelectric measuring apparatus for use in an automatic chemical analyzer in which a plurality of test items are analyzed by using light beams having different wavelengths, including a white light source for emitting a polychromatic light beam, a grating for diffracting the polychromatic light beam into a plurality of light beams having predetermined different wavelengths, a plurality of light guides for guiding the light beams emanating from the grating to a plurality of cuvettes containing test liquids to be analyzed, a plurality of light receiving elements for receiving light beams transmitted through the cuvettes, an additional light guide for guiding a polychromatic light beam emanating from the grating as the zero order light beam to a cuvette via an optical filter having a desired transmission wavelength, and an additional light receiving element for receiving a light beam transmitted through the cuvette.
Abstract:
An analytic instrument for kinetically measuring light absorption characteristics of a plurality of independent samples contained in disposable test tubes arranged in a circular pattern about a single light source. The instrument is designed to be used with a host personal computer and is not specific to any particular type of assay. The instrument obtains and temporarily stores raw data in the form of digitized output signals from the plurality of photodetectors and periodically passes them to the host computer. An incubator has test tube wells arranged in a circular array equidistant from a single incandescent light source. The circular symmetry controls the thermal gradients in the incubator such that all of the samples are disposed on the same isotherm and all of the photodetectors are disposed on the same isotherm. The instrument is designed for use with disposable test tubes, and sources of error arising from optical variation in such test tubes are minimized by providing a separate detector for each tube and by holding the tube fixed with respect to the detector. The light output from the single light source is continuously monitored and is kept constant.
Abstract:
A vertical beam spectrophotometer for measuring the light absorption of an assay prepared using standard wet chemistry procedures and conventional solid phase coated bead technology is disclosed. The spectrophotometer measures the absorption of the assay in a conventional reaction cuvette with the bead remaining in the cuvette. The light source of the spectrophotometer illuminates the bead, which diffuses the light into the surrounding assay solution. A lense projects the diffused light onto a photocell which converts it into an electrical signal having magnitude related to the light absorption of the assay. The signal is processed in a known manner by conventional processing circuitry to obtain an absorption value.
Abstract:
A tip for use in an optical detection system to analyze an analyte in a fluid sample drawn into the tip, using light reflected from a detection surface inside the tip that the analyte binds to, comprising a first detection surface and a second detection surface located in a same flow path with no controllable valve separating them, wherein the first and second detection surfaces have different surface chemistries.
Abstract:
Exemplary embodiments provide microfluidic devices and methods for their use. The microfluidic device can include an array of M×N reaction sites formed by intersecting a first and second plurality of fluid channels of a flow layer. The flow layer can have a matrix design and/or a blind channel design to analyze a large number of samples under a limited number of conditions. The microfluidic device can also include a control layer including a valve system for regulating solution flow through fluid channels. In addition, by aligning the control layer with the fluid channels, the detection of the microfluidic devices, e.g., optical signal collection, can be improved by piping lights to/from the reaction sites. In an exemplary embodiment, guard channels can be included in the microfluidic device for thermal cycling and/or reducing evaporation from the reaction sites.
Abstract:
Exemplary embodiments provide microfludic devices and methods for their use. The microfluidic device can include an array of M×N reaction sites formed by intersecting a first and second plurality of fluid channels of a flow layer. The flow layer can have a matrix design and/or a blind channel design to analyze a large number of samples under a limited number of conditions. The microfluidic device can also include a control layer including a valve system for regulating solution flow through fluid channels. In addition, by aligning the control layer with the fluid channels, the detection of the microfluidic devices, e.g., optical signal collection, can be improved by piping lights to/from the reaction sites. In an exemplary embodiment, guard channels can be included in the microfluidic device for thermal cycling and/or reducing evaporation from the reaction sites.
Abstract:
A device for the photometric examination of samples has a sample-holder apparatus for at least two sample vessels, and a measuring apparatus and a moveable apparatus. The sample-holder apparatus is designed to be stationary, and the measuring apparatus is arranged on the moveable apparatus such that it can be displaced by means of the moveable apparatus.