Abstract:
A waterborne lubricant, useful in the plastic working of metals, which imparts a lubricating behavior to the surface of metals in the absence of a conversion coating contains (A) water-soluble inorganic salt, (B) lubricating agent selected from molybdenum disulfide and graphite, and (C) wax wherein these components are dissolved or dispersed in water, the (B)/(A) solids weight ratio is 1.0 to 5.0, and the (C)/(A) solids weight ratio is 0.1 to 1.0. The water-soluble inorganic salt (A) can be selected from the sulfates, silicates, borates, molybdates, and tungstates. The wax (C) can be a water-dispersed natural or synthetic wax having a melting point of 70 to 150null C. A lubricating coating is formed by application to give a post-drying add-on of 0.5 to 40 g/m2. A method for using said lubricant is also provided.
Abstract translation:可用于金属塑性加工的水性润滑剂在不存在转化涂层的情况下赋予金属表面润滑性能包含(A)水溶性无机盐,(B)选自二硫化钼和石墨的润滑剂 和(C)蜡,其中这些组分溶解或分散在水中,(B)/(A)固体重量比为1.0至5.0,并且(C)/(A)固体重量比为0.1至1.0。 水溶性无机盐(A)可以选自硫酸盐,硅酸盐,硼酸盐,钼酸盐和钨酸盐。 蜡(C)可以是熔点为70〜150℃的水分散天然或合成蜡。通过涂布形成润滑涂层,得到0.5〜40g / m 2的后干燥添加剂。 还提供了使用所述润滑剂的方法。
Abstract:
It is an object of the invention to provide a slide member which is excellent in the initial running-in property and can provide an excellent sliding property even under a strict sliding condition and, in particular, a slide member with a solid lubrication coating film which is excellent not only in the friction property but also in the wear resistance under the fluid lubrication, boundary lubrication and dry lubrication conditions. The invention provides a slide member which includes a solid lubrication coating film on a flat-plate-shaped base member, characterized in that, in the surface of the slide member, there are formed a plurality of concentrical grooves extending in the peripheral direction of the slide member surface, and, between the mutually adjoining ones of the grooves, there are formed ridge portions respectively.
Abstract:
A solid lubricant and composition useful for lubricating the flanges of locomotive wheels, railcar wheels, rail track and in applications where it is desirable to reduce friction when metal contacts metal. The solid lubricant having from about twenty-five percent to about seventy percent by volume of a polymeric carrier, about five to seventy-five percent by volume of organic and inorganic extreme pressure additives, about zero to twenty percent by volume synthetic extreme pressure anti-wear liquid oil, and about zero to one percent by volume optical brightener.
Abstract:
A process is disclosed for manufacturing a lubricant a composition comprising combining a superabsorbent polymer with a material for decreasing friction between moving surfaces. The superabsorbent polymer absorbs from about 25 to greater than 100 times its weight in water and may comprise a polymer of acrylic acid, an acrylic ester, acrylonitrile or acrylamide, including co-polymers thereof or starch graft co-polymers thereof or mixtures thereof. A product produced by the process includes the material for decreasing friction comprising a petroleum lubricant containing an additive, water containing an additive, synthetic lubricant, grease, solid lubricant or metal working lubricant, wherein the synthetic lubricant, grease, solid lubricant or metal working lubricant optionally contain an additive. A process comprising controlling the delivery of a lubricant to at least one of two moving surfaces in order to decrease friction between said moving surfaces, is also disclosed. This process includes applying the lubricant composition to at least one of the surfaces. The lubricant composition in this instance comprises a superabsorbent polymer combined with a material for decreasing friction between moving surfaces, wherein the material for decreasing friction comprises a petroleum lubricant, water, synthetic lubricant, grease, solid lubricant or metal working lubricant, and optionally an additive.
Abstract:
A self-lubricating coating is provided which includes a mixture of a curable acrylate composition including a dipentaerythritol pentaacylate and a solid lubricant, such as polytetraflourethylenr. The curable acrylate composition may also include triethylene glycol dimethacrylate. An aramid pulp may also be added to the coating mixture. Also disclosed is a method of manufacturing the coating, and a self-lubricating bearing having the coating disposed on its surface.
Abstract:
The invention relates to a lubricant which can be used as a mandrel lubricant with a content of 75 to 90 wt. % of graphite and contains 1 to 10 wt. % of a phosphate. Said lubricant can also contain 1 to 4 wt % alkali silicate, 1 to 10 wt. % bentonite, 0.5 to 1 wt. % silico-phosphate and common solid lubricants. Said lubricant is preferably used as an aqueous suspension with a solid content of 20 to 40 wt. %.
Abstract:
The present invention provides compositions and methods for the coating and/or ballistics conditioning of firearm projectiles and firearm components including gun barrels, firearm chambers, fully assembled cartridges, shot gun shells, shotgun wads, shot capsules and sabots with molybdenum disulfide. The composition comprises powdered molybdenum disulfide suspended in a carrier comprising a volatile solvent and a binder selected from cellulosic-, alkyd- and acrylic-resins. Methods for the conditioning of firearm bores by the formation of a hardened layer comprising a product of the reaction or interaction of molybdenum disulfide with materials in the barrel bore are also disclosed.
Abstract:
A stainless steel wire is plated with nickel (Ni) to a thickness of from not less than 1 .mu.m to not more than 5 .mu.m. An inorganic salt coat film mainly composed of at least one of potassium sulfate and borax (borate) and free from fluorine (F) or chlorine (Cl) is then deposited on the nickel (Ni) plate 2 as the substrate. The steel wire is then drawn to a reduction of area of not less than 60% to adjust the surface roughness thereof to a range of from 0.80 to 12.5 .mu.mRz, preferably from 1.0 to 10.0 .mu.mRz.
Abstract:
In accordance with the method according to the invention, for the production of the plastics overlay, first of all a paste is made of a plastics dispersion and fillers. This paste is free of organic solvents and is applied to a sintered porous metal layer. The multilayer material thus produced is then sintered. Since the use of organic solvents is dispensed with, health risks and the risk of fire are reduced. Moreover, the composite materials produced according to the invention exhibit excellent cavitation resistance. In addition to conventional lubricant-free applications, such as bearings, these composite materials may consequently be used in particular in gear pumps and shock absorbers.
Abstract:
A self lubricating, friction and wear reducing composite material useful over a wide temperature range of from cryogenic temperature up to about 900.degree. C. contains 60-80 wt. % of particulate Cr.sub.2 O.sub.3, dispersed in a metal binder of a metal alloy containing Cr and at least 50 wt. % of Ni, Cr or a mixture of Ni and Cr. It also contains 5-20 wt. % of a fluoride of at least one Group I, Group II, or rare earth metal and, optionally, 5-20 wt. % of a low temperature lubricant metal. Such as Ag, Au, Pt, Pd, Rh and Cu. This composite exhibits less oxidation instability and less abrasiveness than composites containing chromium carbide, is readily applied using plasma spray and can be ground and polished with a silicon carbide abrasive.