Abstract:
An apparatus includes a substrate package and a three dimensional (3D) antenna structure formed in the substrate package. The 3D antenna structure includes multiple substructures to enable the 3D antenna structure to operate as a beam-forming antenna. Each of the multiple substructures has a slanted-plate configuration or a slanted-loop configuration.
Abstract:
A filter includes a glass substrate having through substrate vias. The filter also includes capacitors supported by the glass substrate. The capacitors may have a width and/or thickness less than a printing resolution. The filter also includes a 3D inductor within the substrate. The 3D inductor includes a first set of traces on a first surface of the glass substrate coupled to the through substrate vias. The 3D inductor also includes a second set of traces on a second surface of the glass substrate coupled to opposite ends of the through substrate vias. The second surface of the glass substrate is opposite the first surface of the glass substrate. The through substrate vias and traces operate as the 3D inductor. The first set of traces and the second set of traces may also have a width and/or thickness less than the printing resolution.
Abstract:
A diversity receiver switch includes at least one second stage switch configured to communicate with a transceiver. The diversity receiver switch may also include at least one first stage switch coupled between a diversity receiver antenna and the second stage switch(es). The first stage switch(es) may be configured to handle a different amount of power than the second stage switch(es). The diversity receiver switch may include a bank of second stage switches configured to communicate with a transceiver. A first stage switch may be configured to handle more power than each switch in the bank of second stage switches. Alternatively, the diversity receiver switch include a bank of first stage switches coupled between the diversity receiver antenna and a second stage switch. The second stage switch may be configured to handle more power than each of the first stage switches.
Abstract:
Base pads are spaced by a pitch on a support surface. Conducting members, optionally Cu or other metal pillars, extend up from the base pads to top pads. A top pad interconnector connects the top pads in a configuration establishing an inductor current path between the base pads.
Abstract:
Systems for reducing magnetic coupling in integrated circuits (ICs) are disclosed. Related components and methods are also disclosed. The ICs have a plurality of inductors. Each inductor generates a magnetic flux that has a discernible axis. To reduce magnetic coupling between the inductors, the flux axes are designed so as to be non-parallel. In particular, by making the flux axes of the inductors non-parallel to one another, magnetic coupling between the inductors is reduced relative to the situation where the flux axes are parallel. This arrangement may be particularly well suited for use in diplexers having a low pass and a high pass filter.
Abstract:
Some novel features pertain to an integrated device that includes a substrate, a first cavity through the substrate, and a toroid inductor configured around the first cavity of the substrate. The toroid inductor includes a set of windings configured around the first cavity. The set of windings includes a first set of interconnects on a first surface of the substrate, a set of though substrate vias (TSVs), and a second set of interconnects on a second surface of the substrate. The first set of interconnects is coupled to the second set of interconnects through the set TSVs. In some implementations, the integrated device further includes an interconnect material (e.g., solder ball) located within the first cavity. The interconnect material is configured to couple a die to a printed circuit board. In some implementations, the interconnect material is part of the toroid inductor.
Abstract:
An inductive device that includes a conductive via and a metal layer are disclosed. A particular method of forming an electronic device includes forming a metal layer that contacts a surface of a substrate. The substrate, including the surface, is formed from a substantially uniform dielectric material. The metal layer contacts a conductive via that extends at least partially within the substrate. The metal layer and the conductive via form at least a portion of an inductive device.
Abstract:
Systems for reducing magnetic coupling in integrated circuits (ICs) are disclosed. Related components and methods are also disclosed. The ICs have a plurality of inductors. Each inductor generates a magnetic flux that has a discernible axis. To reduce magnetic coupling between the inductors, the flux axes are designed so as to be non-parallel. In particular, by making the flux axes of the inductors non-parallel to one another, magnetic coupling between the inductors is reduced relative to the situation where the flux axes are parallel. This arrangement may be particularly well suited for use in diplexers having a low pass and a high pass filter.
Abstract:
An inductor tunable by a variable magnetic flux density component is disclosed. A particular device includes an inductor. The device further includes a variable magnetic flux density component (VMFDC) positioned to influence a magnetic field of the inductor when a current is applied to the inductor.
Abstract:
A diplexer includes a substrate having a set of through substrate vias. The diplexer also includes a first set of traces on a first surface of the substrate. The first traces are coupled to the through substrate vias. The diplexer further includes a second set of traces on a second surface of the substrate that is opposite the first surface. The second traces are coupled to opposite ends of the set of through substrate vias. The through substrate vias and the traces also operate as a 3D inductor. The diplexer also includes a capacitor supported by the substrate.