Abstract:
A system (102) for determining properties of a sample (114) comprises a LIBS detector (104,106) and an infra-red absorption detector (108,110) for interrogating a sample (114) to generate LIBS spectral data and infra-red absorption spectral data respectively; and a data processor (112) adapted to apply at least one chemometric prediction model, each constructed to link, preferably quantitatively link, features of both LIBS and absorption spectral data to a different specific property of the sample, to a combined dataset derived from at least portions of both the LIBS and the absorption data to generate therefrom a determination, preferably a quantitative determination, of the specific property linked by that model.
Abstract:
A method for estimating soil properties within a field using hyperspectral remotely sensed data is provided. In an embodiment, estimating soil properties may be accomplished using a server computer system that receives, via a network, soil spectrum data records that are used to predict soil properties for a specific geo-location. Within the server computer system a soil preprocessing module receives one or more soil spectrum data records that represent a mean soil spectrum of a specific geo-location of a specified area of land. The soil preprocessing module then removes interference signals from the soil spectrum data, creating a set of one or more spectral bands. By removing interference signals, the spectral bands are not erroneously skewed from effects such as baseline drift, particle deviation, and surface heterogeneity. A soil regression module inputs the one or more soil spectral bands and predicts soil property datasets. The soil property datasets include specific soil properties relevant to determining fertility of the soil or soil property levels that may influence soil management at a specific geo-location. The soil regression module then takes the multiple soil property datasets and selects multiple specific soil property datasets that best represent the existing soil properties. Included in the soil property datasets are the multiple soil properties predicted and the spectral band data used to determine the specific soil properties. The soil regression module sends this predicted data to a soil model database.
Abstract:
An approach to noninvasively and remotely detect the presence, location, and/or quantity of a target substance in a scene via a spectral imaging system comprising a spectral filter array and image capture array. For a chosen target substance, a spectral filter array is provided that is sensitive to selected wavelengths characterizing the electromagnetic spectrum of the target substance. Elements of the image capture array are optically aligned with elements of the spectral filter array to simultaneously capture spectrally filtered images. These filtered images identify the spectrum of the target substance. Program instructions analyze the acquired images to compute information about the target substance throughout the scene. A color-coded output image may be displayed on a smartphone or computing device to indicate spatial and quantitative information about the detected target substance. The system desirably includes a library of interchangeable spectral filter arrays, each sensitive to one or more target substances.
Abstract:
In a noninvasive system for measurement of heart rate and other heart-related characteristics a photoplethysmogram (PPG) obtained from a tissue is divided into several feature waveforms, each corresponding to a PPG window of a particular length. Conditioned features, containing frequency components specific to heart-related events, are derived from the features by modulating a carrier kernel with such features. The conditioned features are computationally collided with one or more Zyotons that are co-dependent with the conditioned features. For each conditioned feature, one or more collisions selectively amplify frequency components in features sourced from PPG, and respective energy change values are obtained from such amplified energy portions. The resulting energy change values are analyzed to determine a smallest time-window likely containing heart rate and other heart-related events in the PPG data stream. Over time, the detected events are grouped and analyzed to determine heart rate and other heart-related characteristics.
Abstract:
A rapid method for characterizing and identifying microorganisms using Focal-Plane Array (FPA)-Fourier Transform Infrared (FTIR) spectroscopy is disclosed. Multi-pixels spectral images of unknown microorganisms spectra are analyzed and compared to spectra of reference microorganisms in databases. The method allows rapid and highly reliable identification of unknown microorganisms for the purpose of medical diagnosis, food and environmental control.
Abstract:
An approach to noninvasively and remotely detect the presence, location, and/or quantity of a target substance in a scene via a spectral imaging system comprising a spectral filter array and image capture array. For a chosen target substance, a spectral filter array is provided that is sensitive to selected wavelengths characterizing the electromagnetic spectrum of the target substance. Elements of the image capture array are optically aligned with elements of the spectral filter array to simultaneously capture spectrally filtered images. These filtered images identify the spectrum of the target substance. Program instructions analyze the acquired images to compute information about the target substance throughout the scene. A color-coded output image may be displayed on a smartphone or computing device to indicate spatial and quantitative information about the detected target substance. The system desirably includes a library of interchangeable spectral filter arrays, each sensitive to one or more target substances.
Abstract:
A system including a light source, sampling tray, and at least three detectors mounted at angles with respect to each other receives light reflected from a sample of cannabis-based matter. Light from the three detectors is fed to a spectrometer which converts the reflected light into a fingerprint corresponding to the concentration of at least one substance in the sample. The fingerprint is processed by a statistical model to determine concentration level of the at least one substance in the sample and the concentration level is then displayed.
Abstract:
A spectroscopic method and system detects the amount of one or more substances or contaminants in or on a product, such as fecal contamination on meat samples.
Abstract:
A system and method for using near-infrared or short-wave infrared (SWIR) light sources between approximately 1.4-1.8 microns, 2-2.5 microns, 1.4-2.4 microns, 1-1.8 microns for active remote sensing or hyper-spectral imaging for detection of natural gas leaks or exploration sense the presence of hydro-carbon gases such as methane and ethane. Most hydro-carbons (gases, liquids and solids) exhibit spectral features in the SWIR, which may also coincide with atmospheric transmission windows (e.g., approximately 1.4-1.8 microns or 2-2.5 microns). Active remote sensing or hyper-spectral imaging systems may include a fiber-based super-continuum laser and a detection system and may reside on an aircraft, vehicle, handheld, or stationary platform. Super-continuum sources may emit light in the near-infrared or SWIR. An imaging spectrometer or a gas-filter correlation radiometer may be used to identify substances or materials such as oil spills, geology and mineralogy, vegetation, greenhouse gases, construction materials, plastics, explosives, fertilizers, paints, or drugs.
Abstract:
A wearable device for use with a smart phone or tablet includes a measurement device having a light source with a plurality of light emitting diodes (LEDs) for measuring physiological parameters and configured to generate an optical beam with wavelengths including a near-infrared wavelength between 700 and 2500 nanometers. The measurement device includes lenses configured to deliver the optical beam to a sample of skin or tissue, which reflects the optical beam to a receiver located a first distance from one of the LEDs and a different distance from another of the LEDs, and is also configured to generate an output signal representing a non-invasive measurement on blood contained within the sample. The wearable device is configured to communicate with the smart phone or tablet, which receives, processes, stores and displays the output signal with the processed output signal configured to be transmitted over a wireless transmission link.