Abstract:
A semiconductor package with build-up layers formed on a chip and a fabrication method of the semiconductor package are provided. A chip with a plurality of conductive bumps formed on bond pads thereof is received within a cavity of a carrier, and a dielectric layer encapsulates the conductive bumps whose ends are exposed. A plurality of conductive traces are formed on the dielectric layer and electrically connected to the ends of the conductive bumps. A solder mask layer is applied over the conductive traces and formed with openings via which predetermined portions of the conductive traces are exposed and bonded to a plurality of solder balls. Thereby, positions of the bond pads are easily recognized and distinguished by the exposed ends of the conductive bumps, making the conductive traces capable of being well electrically connected through the conductive bumps to the bond pads to improve yield of the fabricated packages.
Abstract:
A semiconductor package and a substrate structure thereof are provided. A solder mask layer applied on the substrate structure is formed with outwardly extended openings corresponding to corner portions of a chip mounting area of the substrate structure. When a flip-chip semiconductor chip is mounted on the chip mounting area and an underfilling process is performed, an underfill material can fill a gap between the flip-chip semiconductor chip and the substrate structure, and effectively fill the outwardly extended openings of the solder mask layer corresponding to the corner portions of the chip mounting area so as to provide sufficient protection for corners of the flip-chip semiconductor chip and prevent delamination at the corners of the flip-chip semiconductor chip during a subsequent thermal cycle.
Abstract:
A semiconductor package with build-up layers formed on a chip and a fabrication method of the semiconductor package are provided. A chip with a plurality of conductive bumps formed on bond pads thereof is received within a cavity of a carrier, and a dielectric layer encapsulates the conductive bumps whose ends are exposed. A plurality of conductive traces are formed on the dielectric layer and electrically connected to the ends of the conductive bumps. A solder mask layer is applied over the conductive traces and formed with openings via which predetermined portions of the conductive traces are exposed and bonded to a plurality of solder balls. Thereby, positions of the bond pads are easily recognized and distinguished by the exposed ends of the conductive bumps, making the conductive traces capable of being well electrically connected through the conductive bumps to the bond pads to improve yield of the fabricated packages.
Abstract:
A semiconductor package and a fabrication method thereof are provided in which a dielectric material layer formed with a plurality of openings is used and a solder material is applied into each of the openings. A first copper layer and a second copper layer are in turn deposited over the dielectric material layer and solder materials, and the first and second copper layers are patterned to form a plurality of conductive traces each of which has a terminal coated with a metal layer. A chip is mounted on the conductive traces and electrically connected to the terminals by bonding wires, with the dielectric material layer and solder materials being exposed to the outside. This package structure can flexibly arrange the conductive traces and effectively shorten the bonding wires, thereby improve trace routability and quality of electrical connection for the semiconductor package.
Abstract:
A semiconductor device and the fabrication method thereof are provided. The fabrication method includes providing a substrate module plate having a plurality of substrates; attaching at least one sensor chip to each of the substrates of the substrate module plate; electrically connecting each of the sensor chips to each of the substrates through bonding wires; forming an insulating layer between each sensor chip on the substrate module plate, wherein the height of the insulating layers are not greater than the thickness of the sensor chips so as to prevent flash from the insulating layers from contaminating the sensor chips; forming an adhesive lip on the insulating layer or forming a second insulating layer followed by forming the adhesive layer, wherein the adhesive layer or the second insulating layer is higher than the highest loop-height of the bonding wires; adhering a light transmitting cover to each adhesive layer to cover the sensor chip; and cutting the substrate module plate to separate the substrates to form a plurality of semiconductor devices each integrated with at least one sensor chip. As the adhesive layers are not in contact with the bonding wires, the problems of damaging or breaking the bonding wires can be prevented in the process of adhering the light transmitting cover.
Abstract:
A semiconductor package with build-up layers formed on a chip and a fabrication method of the semiconductor package are provided. A chip with a plurality of conductive bumps formed on bond pads thereof is received within a cavity of a carrier, and a dielectric layer encapsulates the conductive bumps whose ends are exposed. A plurality of conductive traces are formed on the dielectric layer and electrically connected to the ends of the conductive bumps. A solder mask layer is applied over the conductive traces and formed with openings via which predetermined portions of the conductive traces are exposed and bonded to a plurality of solder balls. Thereby, positions of the bond pads are easily recognized and distinguished by the exposed ends of the conductive bumps, making the conductive traces capable of being well electrically connected through the conductive bumps to the bond pads to improve yield of the fabricated packages.
Abstract:
A semiconductor packaging technology is proposed for the fabrication of a chip-on-chip (COC) based multi-chip module (MCM) with molded underfill. The proposed semiconductor packaging technology is characterized by the provision of a side gap of an empirically-predetermined width between the overlying chips mounted through COC technology over an underlying chip to serve as an air vent during molding process. This allows the injected molding material to flow freely into the flip-chip undergaps during molding process. In actual application, the exact width of the side gap is empirically predetermined through molded-underfill simulation experiments to find the optimal value. Based on experimental data, it is found that this side gap width should be equal to or less than 0.3 mm to allow optimal underfill effect. The optimal value for this side gap width may be varied for different package specifications.
Abstract:
A packaging substrate and a semiconductor package using the packaging substrate are provided. The packaging substrate includes: a substrate body having a die attach area, a circuit layer formed around the die attach area and having a plurality of conductive traces each having a wire bonding pad, and a surface treatment layer formed on the wire bonding pads. Therein, only one of the conductive traces is connected to an electroplating line so as to prevent cross-talk that otherwise occurs between conductive traces due to too many electroplating lines in the prior art.
Abstract:
A package substrate having landless conductive traces is proposed, which includes a core layer with a plurality of plated through holes formed therein, and a plurality of conductive traces formed on at least a surface of the core layer. Each of the conductive traces has a connection end, a bond pad end, and a base body connecting the connection end and the bond pad end, the conductive trace is electrically connected to a corresponding one of the plated through holes through the connection end, and the connection end has a width greater than that of the base body but not greater than the diameter of the plated through hole, thereby increasing the contact area between the conductive trace and the plated through hole and preventing the contact surface of the conductive trace with the plated through hole from cracking.
Abstract:
A semiconductor package and a fabrication method thereof are provided in which a dielectric material layer formed with a plurality of openings is used and a solder material is applied into each of the openings. A first copper layer and a second copper layer are in turn deposited over the dielectric material layer and solder materials, and the first and second copper layers are patterned to form a plurality of conductive traces each of which has a terminal coated with a metal layer. A chip is mounted on the conductive traces and electrically connected to the terminals by bonding wires, with the dielectric material layer and solder materials being exposed to the outside. This package structure can flexibly arrange the conductive traces and effectively shorten the bonding wires, thereby improve trace routability and quality of electrical connection for the semiconductor package.