Abstract:
Methods for forming layers on a substrate having a feature are provided herein. In some embodiments, a method for forming layers on a substrate having a features may include depositing a copper layer within the feature, wherein a thickness of the copper layer disposed on upper corners of an opening of the feature and on an upper portion of a sidewall proximate the upper corners of the feature is greater than the thickness of the copper layer disposed on a lower portion of a sidewall of the feature proximate a bottom of the feature; and exposing the substrate to a plasma formed from a process gas comprising hydrogen (H2) gas to selectively etch the copper layer proximate the upper corners of the opening and the upper portion of the sidewall proximate the upper corners, without substantially etching the copper layer proximate the lower portion of the sidewall proximate the bottom of the feature.
Abstract:
Implementations described herein generally relate to methods for forming dielectric films in high aspect ratio features. In one implementation, a method for forming a silicon oxide layer is provided. A silicon-containing precursor gas is flown into a processing chamber having a substrate having a high aspect ratio feature disposed therein. Then a high frequency plasma is applied to the silicon-containing precursor gas to deposit a silicon-containing layer over the surface of the high aspect ratio feature. The processing chamber is purged to remove by-products from the silicon-containing layer deposition process. An oxygen-containing precursor gas is flown into the processing chamber. A high frequency plasma and a low frequency plasma are applied to the oxygen-containing precursor gas to form the silicon oxide layer.
Abstract:
A magnetron sputter reactor for sputtering deposition materials such as tantalum, tantalum nitride and copper, for example, and its method of use, in which self-ionized plasma (SIP) sputtering and inductively coupled plasma (ICP) sputtering are promoted, either together or alternately, in the same or different chambers. Also, bottom coverage may be thinned or eliminated by ICP resputtering in one chamber and SIP in another. SIP is promoted by a small magnetron having poles of unequal magnetic strength and a high power applied to the target during sputtering. ICP is provided by one or more RF coils which inductively couple RF energy into a plasma. The combined SIP-ICP layers can act as a liner or barrier or seed or nucleation layer for hole. In addition, an RF coil may be sputtered to provide protective material during ICP resputtering. In another chamber an array of auxiliary magnets positioned along sidewalls of a magnetron sputter reactor on a side towards the wafer from the target. The magnetron preferably is a small, strong one having a stronger outer pole of a first magnetic polarity surrounding a weaker outer pole of a second magnetic polarity and rotates about the central axis of the chamber. The auxiliary magnets preferably have the first magnetic polarity to draw the unbalanced magnetic field component toward the wafer. The auxiliary magnets may be either permanent magnets or electromagnets.
Abstract:
Native oxides and associated residue are removed from surfaces of a substrate by sequentially performing two plasma cleaning processes on the substrate in a single processing chamber. The first plasma cleaning process removes native oxide formed on a substrate surface by generating a cleaning plasma from a mixture of ammonia (NH3) and nitrogen trifluoride (NF3) gases, condensing products of the cleaning plasma on the native oxide to form a thin film that contains ammonium hexafluorosilicate ((NH4)2SiF6), and subliming the thin film off of the substrate surface. The second plasma cleaning process removes remaining residues of the thin film by generating a second cleaning plasma from nitrogen trifluoride gas. Products of the second cleaning plasma react with a few angstroms of the bare silicon present on the surface, forming silicon tetrafluoride (SiF4) and lifting off residues of the thin film.