Abstract:
Embodiments of the invention relate to a method of functional materials deposition using a polymer template fabricated on a substrate. Such template forms an exposed and masked areas of the substrate material, and can be fabricated using polymer resists or Self-assembled monolayers. Deposition is performed using an applicator, which is fabricated in the shape of cylinder or cone made of soft elastomeric materials or laminated with soft elastomeric film. Functional materials, for example, metals, semiconductors, sol-gels, colloids of particles are deposited on the surface of applicator using liquid immersion, soaking, contact with wetted surfaces, vapor deposition or other techniques. Then wetted applicator is contacted the surface of the polymer template and rolled over it's surface. During this dynamic contact functional material is transferred selectively to the areas of the template. Patterning of functional material is achieved by lift-off of polymeric template after deposition. According to another embodiment, where self-assembled monolayers are used as template, selective deposition of functional materials is achieved either due to low surface energy of SAM or reactivity of terminal groups.
Abstract:
The present invention is related to a chemical vapor deposition method of depositing layers of materials to provide super-hydrophilic surface properties, or super-hydrophobic surface properties, or combinations of such properties at various locations on a given surface. The invention also relates to various product applications which make use of super-hydrophobic surface properties, such as electronic devices, biological analytical and diagnostic tools, and optical devices, for example.
Abstract:
A vapor phase deposition method and apparatus for the application of thin layers and coatings on substrates. The method and apparatus are useful in the fabrication of electronic devices, micro-electromechanical systems (MEMS), Bio-MEMS devices, micro and nano imprinting lithography, and microfluidic devices. The apparatus used to carry out the method provides for the addition of a precise amount of each of the reactants to be consumed in a single reaction step of the coating formation process. The apparatus provides for precise addition of quantities of different combinations of reactants during a single step or when there are a number of different individual steps in the coating formation process. The precise addition of each of the reactants in vapor form is metered into a predetermined set volume at a specified temperature to a specified pressure, to provide a highly accurate amount of reactant.
Abstract:
We have devised an apparatus useful for and a method of removing impurities from vaporous precursor compositions used to generate reactive precursor vapors from which thin films/layers are formed under sub-atmospheric conditions. The method is particularly useful when the layer deposition apparatus provides for precise addition of quantities of different combinations of reactants during a single step or when there are a number of different individual steps in the layer formation process, where the presence of impurities has a significant affect on both the quantity of reactants being charged and the overall composition of the reactant mixture from which the layer is deposited. The method is particularly useful when the vapor pressure of a liquid reactive precursor is less than about 250 Torr at atmospheric pressure.
Abstract:
An optical cross-connect switch comprises a base (216), a flap (211) and one or more electrically conductive landing pads (222) connected to the flap (211). The flap (211) has a bottom portion that is movably coupled to the base (216) such that the flap (211) is movable with respect to a plane of the base (216) from a first orientation to a second orientation. The one or more landing pads (222) are electrically isolated from the flap (211) and electrically coupled to be equipotential with a landing surface.
Abstract:
An improved vapor-phase deposition method and apparatus for the application of multilayered films/coatings on substrates is described. The method is used to deposit multilayered coatings where the thickness of an oxide-based layer in direct contact with a substrate is controlled as a function of the chemical composition of the substrate, whereby a subsequently deposited layer bonds better to the oxide-based layer. The improved method is used to deposit multilayered coatings where an oxide-based layer is deposited directly over a substrate and an organic-based layer is directly deposited over the oxide-based layer. Typically, a series of alternating layers of oxide-based layer and organic-based layer are applied.
Abstract:
Embodiments of the invention pertain to methods useful in transfer printing of small objects, like micro-LEDs from one substrate to another using acoustic or ultrasonic energy. The pickup of objects from a substrate is performed by transfer head equipped with sticky polymer and an array of ultrasonic transducers, and the high efficiency and selectivity of pickup of selected objects is done using ultrasonic energy directed towards the object. The disposing of objects to another substrate from a transfer head is done by directing an ultrasonic energy toward an object, which enable effective and selective detachment of an object from a sticky polymer. Yet another embodiment also uses a UV light source, which directs the light to the UV curable liquid disposed around the object on receiving substrate, thus curing this liquid would attach an object to receiving substrate.
Abstract:
Embodiments of the invention pertain to methods useful in transfer printing of small objects, like micro-LEDs from one substrate to another using acoustic or ultrasonic energy. The pickup of objects from a substrate is performed by transfer head equipped with sticky polymer and an array of ultrasonic transducers, and the high efficiency and selectivity of pickup of selected objects is done using ultrasonic energy directed towards the object. The disposing of objects to another substrate from a transfer head is done by directing an ultrasonic energy toward an object, which enable effective and selective detachment of an object from a sticky polymer. Yet another embodiment also uses a UV light source, which directs the light to the UV curable liquid disposed around the object on receiving substrate, thus curing this liquid would attach an object to receiving substrate.
Abstract:
Embodiments of the invention relate to methods and apparatus useful in the nanopatterning of large area substrates, where a movable nanostructured film is used to image a radiation-sensitive material. The nanopatterning technique makes use of Near-Field photolithography, where the nanostructured film used to modulate light intensity reaching radiation-sensitive layer. The Near-Field photolithography may make use of an elastomeric phase-shifting mask, or may employ surface plasmon technology, where a movable film comprises metal nano holes or nanoparticles.
Abstract:
Methods for fabricating nanopatterned cylindrical photomasks are disclosed. A master pattern having nanometer scale features may be formed on a master substrate. A layer of an elastomer material may be formed on a surface of a transparent cylinder. The master pattern may be transferred from the master to the layer of elastomer material on the surface of the transparent cylinder. Alternatively, a nanopatterned cylindrical photomask may be fabricated by forming a pattern having nanometer scale features on an elastomer substrate and laminating the patterned elastomer substrate to a surface of a cylinder. In another method, a layer of elastomer material may be formed on a surface of a transparent cylinder and a pattern having nanometer scale features may be formed on the elastomer material by a direct patterning process.