摘要:
Compositions useful for the selective removal of silicon nitride materials relative to poly-silicon, silicon oxide materials and/or silicide materials from a microelectronic device having same thereon. The removal compositions include fluorosilicic acid, silicic acid, and at least one organic solvent. Typical process temperatures are less than about 100° C. and typical selectivity for nitride versus oxide etch is about 200:1 to about 2000:1. Under typical process conditions, nickel-based silicides as well as titanium and tantalum nitrides are largely unaffected, and polysilicon etch rates are less than about 1 Å min−1.
摘要:
Cleaning compositions and processes for cleaning post-plasma etch residue from a microelectronic device having said residue thereon. The composition achieves highly efficacious cleaning of the residue material, including titanium-containing, copper-containing, tungsten-containing, and/or cobalt-containing post-etch residue from the microelectronic device while simultaneously not damaging the interlevel dielectric, metal interconnect material, and/or capping layers also present thereon. In addition, the composition may be useful for the removal of titanium nitride layers from a microelectronic device having same thereon.
摘要:
A method is provided for electroplating a gate metal or other conducting or semiconducting material directly on a dielectric such as a gate dielectric. The method involves selecting a substrate, dielectric layer, and electrolyte solution or melt, wherein the combination of the substrate, dielectric layer, and electrolyte solution or melt allow an electrochemical current to be passed from the substrate through the dielectric layer into the electrolyte solution or melt. Methods are also provided for electrochemical modification of dielectrics utilizing through-dielectric current flow.
摘要:
A first metal is plated onto a substrate comprising a second metal by immersing the substrate into a bath comprising a compound of the first metal and an organic diluent. The second metal is more electropositive than the first metal. The organic diluent has a boiling point higher than a eutectic point in a phase diagram of the first and second metals. The bath is operated above the eutectic point but below the melting point of the second metal. For example, bismuth is immersion plated onto lead-free tin-based solder balls, and subsequently redistributed by fluxless reflow. Plated structures are also provided.
摘要:
Disclosed is a method for making a metal gate for a FET, wherein the metal gate comprises at least some material deposited by electroplating as well as an FET device comprising a metal gate that is at least partially plated. Further disclosed is a method for making a metal gate for a FET wherein the metal gate comprises at least some plated material and the method comprises the steps of: selecting a substrate having a top surface and a recessed region; conformally depositing a thin conductive seed layer on the substrate; and electroplating a filler gate metal on the seed layer to fill and overfill the recessed region.
摘要:
A method is provided for treating a plurality of semiconductor substrates using the same aqueous SC-1 solution which solution removes and/or inhibits contamination of the semiconductor surfaces by metallic ions present in the solution or on the substrate surface comprising a basic solution containing hydrogen peroxide and an oxidation-resistant chelating additive such as CDTA in an amount effective to provide the desired treatment results. The SC-1 solution may be the conventional 5:1:1 (water:NH.sub.4 OH:H.sub.2 O.sub.2) solution or a dilute solution such as a 5:x:1 to 200:x:1 solution wherein x is 0.025 to 2.
摘要:
Compositions and methods for removing lanthanoid-containing solids and/or species from the surface of a microelectronic device or microelectronic device fabrication hardware. Preferably, the lanthanoid-containing solids and/or species comprise cerium. The composition is preferably substantially devoid of fluoride ions.
摘要:
An aqueous solution of a cerium (IV) complex or salt having an extended lifetime is provided. In one embodiment, the extended lifetime is achieved by adding at least one booster additive to an aqueous solution of the cerium (IV) complex or salt. In another embodiment, the extended lifetime is achieved by providing an aqueous solution of a cerium (IV) complex or salt and a cerium (III) complex or salt. The cerium (III) complex or salt can be added or it can be generated in-situ by introducing a reducing agent into the aqueous solution of the cerium (IV) complex or salt. The aqueous solution can be used to remove a mask material, especially an ion implanted and patterned photoresist, from a surface of a semiconductor substrate.
摘要:
An aqueous solution of a cerium (IV) complex or salt having an extended lifetime is provided. In one embodiment, the extended lifetime is achieved by adding at least one booster additive to an aqueous solution of the cerium (IV) complex or salt. In another embodiment, the extended lifetime is achieved by providing an aqueous solution of a cerium (IV) complex or salt and a cerium (III) complex or salt. The cerium (III) complex or salt can be added or it can be generated in-situ by introducing a reducing agent into the aqueous solution of the cerium (IV) complex or salt. The aqueous solution can be used to remove a mask material, especially an ion implanted and patterned photoresist, from a surface of a semiconductor substrate.
摘要:
Compositions useful for the selective removal of silicon nitride materials relative to poly-silicon, silicon oxide materials and/or silicide materials from a microelectronic device having same thereon. The removal compositions include fluorosilicic acid, silicic acid, and at least one organic solvent. Typical process temperatures are less than about 100° C. and typical selectivity for nitride versus oxide etch is about 200:1 to about 2000:1. Under typical process conditions, nickel-based silicides as well as titanium and tantalum nitrides are largely unaffected, and polysilicon etch rates are less than about 1 Å min−1.