Abstract:
A semiconductor package and a fabrication method thereof are provided in which a dielectric material layer formed with a plurality of openings is used and a solder material is applied into each of the openings. A first copper layer and a second copper layer are in turn deposited over the dielectric material layer and solder materials, and the first and second copper layers are patterned to form a plurality of conductive traces each of which has a terminal coated with a metal layer. A chip is mounted on the conductive traces and electrically connected to the terminals by bonding wires, with the dielectric material layer and solder materials being exposed to the outside. This package structure can flexibly arrange the conductive traces and effectively shorten the bonding wires, thereby improve trace routability and quality of electrical connection for the semiconductor package.
Abstract:
A semiconductor package and a method for fabricating the same are proposed. A substrate having a first circuit layer, a second circuit layer, and a core layer formed between the first and second circuit layers is provided. At least one second opening is formed on the second circuit layer. At least one first opening is formed on the first circuit layer corresponding to the second opening. A plurality of finger holes corresponding to bond fingers on the first circuit layer are formed in the core layer. A through opening is formed in the core layer and communicates with the first and second openings. At least one chip is mounted on the first circuit layer and covers the first opening, with its active surface being exposed to the first opening. An encapsulant is formed to fill the first and second openings and the through opening and encapsulate the chip.
Abstract:
A semiconductor package and a fabrication method thereof are provided in which a dielectric material layer formed with a plurality of openings is used and a solder material is applied into each of the openings. A first copper layer and a second copper layer are in turn deposited over the dielectric material layer and solder materials, and the first and second copper layers are patterned to form a plurality of conductive traces each of which has a terminal coated with a metal layer. A chip is mounted on the conductive traces and electrically connected to the terminals by bonding wires, with the dielectric material layer and solder materials being exposed to the outside. This package structure can flexibly arrange the conductive traces and effectively shorten the bonding wires, thereby improve trace routability and quality of electrical connection for the semiconductor package.
Abstract:
A semiconductor package and a fabrication method thereof are provided in which a dielectric material layer formed with a plurality of openings is used and a solder material is applied into each of the openings. A first copper layer and a second copper layer are in turn deposited over the dielectric material layer and solder materials, and the first and second copper layers are patterned to form a plurality of conductive traces each of which has a terminal coated with a metal layer. A chip is mounted on the conductive traces and electrically connected to the terminals by bonding wires, with the dielectric material layer and solder materials being exposed to the outside. This package structure can flexibly arrange the conductive traces and effectively shorten the bonding wires, thereby improve trace routability and quality of electrical connection for the semiconductor package.
Abstract:
A semiconductor package substrate proposed by the invention includes a base body and a plurality of finger pads disposed on surface of the base body, wherein the finger pads are arranged in such a way that an angle is formed between connecting line of centers of two adjacent finger pads and the direction in which the finger pads are arranged. The finger pads are waterdrop shaped finger pads with arc ends and angle ends alternately disposed on surface of the substrate, alternately disposed waterdrop shaped finger pads and arc shaped finger pads, or alternately disposed arc shaped finger pads at a predetermined spacing. According to the present invention, distance between adjacent finger pads is reduced and problem of short circuit as a result of erroneous contact between bonding wire and adjacent finger pad is prevented.
Abstract:
A semiconductor package on which a semiconductor device can be stacked and fabrication method thereof are provided. The fabrication method includes the steps of mounting and electrically connecting at least one semiconductor chip on the substrate, mounting an electrical connecting structure consisting of an upper layer circuit board and a lower layer circuit board on the substrate and electrically connecting the electrical connecting structure to the substrate, where the semiconductor chip is received in a receiving space formed in the electrical connecting structure; forming an encapsulant on the substrate encapsulating the semiconductor chip and the electrical connecting structure, and after the encapsulant is formed, exposing top surface of the upper layer circuit board with a plurality of solder pads from the encapsulant to allow at least one semiconductor device to electrically connect the upper layer circuit board so as to form a stack structure.
Abstract:
A stacked semiconductor structure and fabrication method thereof are provided. The method includes mounting and connecting electrically a semiconductor chip to a first substrate, mounting on the first substrate a plurality of supporting members corresponding in position to a periphery of the semiconductor chip, mounting a second substrate having a first surface partially covered with a tape and a second surface opposite to the first surface on the supporting members via the second surface, connecting electrically the first and second substrates by bonding wires, forming on the first substrate an encapsulant for encapsulating the semiconductor chip, the supporting members, the second substrate, the bonding wires, and the tape with an exposed top surface, and removing the tape to expose the first surface of the second substrate and allow an electronic component to be mounted thereon. The present invention prevents reflow-induced contamination, spares a special mold, and eliminates flash.
Abstract:
A semiconductor package with build-up layers formed on a chip and a fabrication method of the semiconductor package are provided. A chip with a plurality of conductive bumps formed on bond pads thereof is received within a cavity of a carrier, and a dielectric layer encapsulates the conductive bumps whose ends are exposed. A plurality of conductive traces are formed on the dielectric layer and electrically connected to the ends of the conductive bumps. A solder mask layer is applied over the conductive traces and formed with openings via which predetermined portions of the conductive traces are exposed and bonded to a plurality of solder balls. Thereby, positions of the bond pads are easily recognized and distinguished by the exposed ends of the conductive bumps, making the conductive traces capable of being well electrically connected through the conductive bumps to the bond pads to improve yield of the fabricated packages.
Abstract:
A semiconductor package and a method for fabricating the same are proposed. A substrate having a first circuit layer, a second circuit layer, and a core layer formed between the first and second circuit layers is provided. At least one second opening is formed on the second circuit layer. At least one first opening is formed on the first circuit layer corresponding to the second opening. A plurality of finger holes corresponding to bond fingers on the first circuit layer are formed in the core layer. A through opening is formed in the core layer and communicates with the first and second openings. At least one chip is mounted on the first circuit layer and covers the first opening, with its active surface being exposed to the first opening. An encapsulant is formed to fill the first and second openings and the through opening and encapsulate the chip.
Abstract:
A conductive bump structure for a semiconductor device and a method for fabricating the same are provided. A metal bump is formed on an under bump metallurgy (UBM) structure electrically connected to and formed on a connection pad of the semiconductor device, wherein the metal bump is sized smaller than the UBM structure. Subsequently, a solder bump is mounted on the UBM structure and encapsulates the metal bump, so as to increase the bonding area and simultaneously allow the solder bump to be sufficiently wetted on the UBM structure to enhance bonding stress of the solder bump.