Abstract:
A high dielectric constant (k≧40), low leakage current (≦10−6 A/cm2 at 0.6 nm or lower equivalent oxide thickness) non-crystalline metal oxide is described, including an oxide of two or more compatible metals selected from the group consisting of bismuth, tantalum, niobium, barium, strontium, calcium, magnesium, titanium, zirconium, hafnium, tin, and lanthanide series metals. Metal oxides of such type may be formed with relative proportions of constituent metals being varied along a thickness of such oxides, to enhance their stability. The metal oxide may be readily made by a disclosed atomic layer deposition process, to provide a metal oxide dielectric material that is usefully employed in DRAM and other microelectronic devices.
Abstract translation:描述了非晶体金属氧化物的高介电常数(k≥40),低漏电流(≦̸ 0.6nm或更低等效氧化物厚度下的10-6A / cm 2),包括两种或更多种相容金属的氧化物,其选自 由铋,钽,铌,钡,锶,钙,镁,钛,锆,铪,锡和镧系金属组成的组。 可以形成这种类型的金属氧化物,其中组成金属的相对比例沿着这种氧化物的厚度变化,以增强它们的稳定性。 金属氧化物可以通过公开的原子层沉积方法容易地制成,以提供可用于DRAM和其它微电子器件的金属氧化物介电材料。
Abstract:
Provided are certain liquid silicon precursors useful for the deposition of silicon-containing films, such as films comprising silicon, silicon nitride, silicon oxynitride, silicon dioxide, silicon carbide, carbon-doped silicon nitride, or carbon-doped silicon oxynitride. Also provided are methods for forming such films utilizing vapor deposition techniques.
Abstract:
Coatings applicable to a variety of substrate articles, structures, materials, and equipment are described. In various applications, the substrate includes metal surface susceptible to formation of oxide, nitride, fluoride, or chloride of such metal thereon, wherein the metal surface is configured to be contacted in use with gas, solid, or liquid that is reactive therewith to form a reaction product that deleterious to the substrate article, structure material, or equipment. The metal surface is coated with a protective coating preventing reaction of the coated surface with the reactive gas, and/or otherwise improving the electrical, chemical, thermal, or structural properties of the substrate article or equipment. Various methods of coating the metal surface are described, and for selecting the coating material that is utilized.
Abstract:
Chemical vapor deposition (CVD) processes which use a ruthenium precursor of formula R1R2Ru(0), wherein R1 is an aryl group-containing ligand, and R2 is a diene group-containing ligand and a reducing gas a described. The CVD can include oxygen after an initial deposition period using the ruthenium precursor and reducing gas. The method can provide selective Ru deposition on conductive materials while minimizing deposition on non-conductive or less conductive materials. Further, the subsequent use of oxygen can significantly improve deposition rate while minimizing or eliminating oxidative damage of the substrate material. The method can be used to form Ru-containing layers on integrated circuits and other microelectronic devices.
Abstract:
The invention provides a process for preparing molybdenum and tungsten oxyhalide compounds which are useful in the deposition of molybdenum and tungsten containing films on various surfaces of microelectronic devices. In the process of the invention, a molybdenum or tungsten trioxide is heated in either a solid state medium or in a melt-phase reaction comprising a eutectic blend comprising alkaline and/or alkaline earth metal salts. The molybdenum or tungsten oxyhalides thus formed may be isolated as a vapor and crystallized to provide highly pure precursor compounds such as MoO2Cl2.
Abstract:
The present disclosure relates to a bridging asymmetric haloalkynyl dicobalt hexacarbonyl precursors, and ultra high purity versions thereof, methods of making, and methods of using these bridging asymmetric haloalkynyl dicobalt hexacarbonyl precursors in a vapor deposition process. One aspect of the disclosure relates to an ultrahigh purity bridging asymmetric haloalkynyl dicobalt hexacarbonyl precursor of the formula Co2(CO)6(R3C≡CR4), where R3 and R4 are different organic moieties and R4 is more electronegative or more electron withdrawing compared to R3.
Abstract:
A system including a chemical supply cabinet (e.g., such as a chemical supply cabinet configured to contain an ampoule), a module configured to modify a surface, and a control unit connected to the module, wherein the control unit is configured to direct the modifying of the surface.
Abstract:
The present disclosure relates to a bridging asymmetric haloalkynyl dicobalt hexacarbonyl precursors, and ultra high purity versions thereof, methods of making, and methods of using these bridging asymmetric haloalkynyl dicobalt hexacarbonyl precursors in a vapor deposition process. One aspect of the disclosure relates to an ultrahigh purity bridging asymmetric haloalkynyl dicobalt hexacarbonyl precursor of the formula Co2(CO)6(R3C≡CR4), where R3 and R4 are different organic moieties and R4 is more electronegative or more electron withdrawing compared to R3.
Abstract:
Provided is a plasma enhanced atomic layer deposition (PEALD) process for depositing etch-resistant SiOCN films. These films provide improved growth rate, improved step coverage and excellent etch resistance to wet etchants and post-deposition plasma treatments containing O2 and NH3 co-reactants. This PEALD process relies on one or more precursors reacting in tandem with the plasma exposure to deposit the etch-resistant thin-films of SiOCN. The films display excellent resistance to wet etching with dilute aqueous HF solutions, both after deposition and after post-deposition plasma treatment(s). Accordingly, these films are expected to display excellent stability towards post-deposition fabrication steps utilized during device manufacturing and build.
Abstract:
Chemical vapor deposition (CVD) processes which use a ruthenium precursor of formula R1R2Ru(0), wherein R1 is an aryl group-containing ligand, and R2 is a diene group-containing ligand and a reducing gas a described. The CVD can include oxygen after an initial deposition period using the ruthenium precursor and reducing gas. The method can provide selective Ru deposition on conductive materials while minimizing deposition on non-conductive or less conductive materials. Further, the subsequent use of oxygen can significantly improve deposition rate while minimizing or eliminating oxidative damage of the substrate material. The method can be used to form Ru-containing layers on integrated circuits and other microelectronic devices.