Abstract:
A semiconductor device includes at least one passive device and is configured such that parasitic capacitances associated with the passive device are minimized. A substrate layer of the semiconductor device is formed of a substrate material characterized by a first dielectric constant. The substrate layer has at least one deep trench formed therein, and the deep trench is filled with a trench fill material characterized by a second, effective, dielectric constant that is lower than the first dielectric constant. A field layer is formed on a surface of the substrate layer over the deep trench. Finally, the passive device is formed on a surface of the field layer.
Abstract:
A self-aligned fully-walled monocrystalline silicon emitter-base structure for a bipolar transistor and methods for producing the structure are provided. The methods involve creating an oxide side wall surrounding a monocrystalline silicon emitter-base structure by first defining the emitter region in a base island region. Successive oxide layers are deposited on top of the emitter region and etched back to produce an oxide wall around the entire perimeter of the emitter region. In a preferred embodiment of the invention a metal silicide is also formed across the top of the base island region of the semiconductor outside of the emitter region. Since the extrinsic base region, outside of the oxide sidewalls, is entirely covered by a low resistance silicide film, the base contact area can be significantly reduced compared to prior art devices.The process results in a fully-walled emitter-base structure made of monocrystalline silicon which exhibits improved high-frequency performance. The peripheral emitter-base capacitance is substantially decreased by the oxide walls which surround the emitter sides. Since the sides of the emitter are walled, no lateral current injection can occur. Bipolar transistors which employ the claimed process exhibit an increased emitter-base breakdown and a reduced forward tunneling current since high sidewall doping levels are eliminated.
Abstract:
A device isolation scheme that is particularly suited to the fabrication of high density, high performance CMOS, bipolar, or BiCMOS devices, and overcomes many of the problems associated with existing isolation methods. Photolithographic techniques are used to define active regions on a substrate. Using the photoresist as a mask for the active regions, the silicon in the inactive regions is etched. A pad oxide layer and nitride layer are then formed on the substrate. A layer of oxide is then deposited and photolithographic techniques are again used to define the locations for desired trench structures. After removal of the remaining photoresist, deep trenches are etched in the silicon substrate. An oxidation step is then carried out to provide a layer of oxide lining the trenches, followed by deposition of a layer of poly-silicon over the substrate, filling the trenches. The poly-silicon layer is etched back, removing it from the tops of the trenches and the field regions, and leaving a poly-silicon spacer on the sides of those portions of the previously deposited oxide layer which cover the active regions. The spacers are used to align a photoresist mask which is used to etch away the oxide layer on top of the active regions. The spacers are then removed while keeping the photoresist mask intact, thereby protecting the poly-silicon on top of the trenches. The photoresist mask is then removed and the poly-silicon on top of each trench is oxidized to cap the trench. The result is a highly planar surface in which active regions are separated by field oxide or poly-silicon filled trenches.
Abstract:
Structures which improve the high frequency performance of bipolar discrete or integrated transistors through minimization of base contact size and hence collector-base capacitance (and collector-substrate capacitance, if integrated), are disclosed. The transistor comprises at least one elongate emitter arm and substantially minimum-dimension base contacts positioned one facing each side of each emitter arm at at least a minimum dimension from each emitter arm. A base diffusion area is positioned under and is minimum-dimensionally larger than the outer perimeter of the areas bounded by all of the smallest imaginary triangles each including a base contact and a facing emitter arm. Specific examples are described, namely a so-called "lozenge" structure, for relatively narrow emitters, a "cross" structure for wider emitters, and a "T" structure.
Abstract:
Embodiments disclosed herein provide for a circuit including first die having an active side and a backside, wherein the first die is flip-chip mounted to a carrier. The circuit also includes a second die stacked on the backside of the first die, wherein the second die is stacked on the first die such that a backside of the second die is facing the backside of the first die and an active side of the second die faces away from the first die.
Abstract:
A voltage converter includes an output circuit having a high side device and a low side device which can be formed on a single die (i.e. a “PowerDie”) and connected to each other through a semiconductor substrate. Both the high side device and the low side device can include lateral diffused metal oxide semiconductor (LDMOS) transistors. Because both output transistors include the same type of transistors, the two devices can be formed simultaneously, thereby reducing the number of photomasks over other voltage converter designs. The voltage converter can further include a controller circuit on a different die which can be electrically coupled to, and co-packaged with, the PowerDie.
Abstract:
Systems and methods for facilitating lift-off processes are provided. In one embodiment, a method for pattering a thin film on a substrate comprises: depositing a first sacrificial layer of photoresist material onto a substrate such that one or more regions of the substrate are exposed through the first sacrificial layer; depositing a protective layer over at least part of the first sacrificial layer; partially removing the first sacrificial layer to form at least one gap between the protective layer and the substrate; depositing an optical coating over the protective layer and the one or more regions of the substrate exposed through the first sacrificial layer, wherein the optical coating deposited over the protective layer is separated by the at least one gap from the optical coating deposited over the regions of the substrate exposed through the first sacrificial layer; and removing the first sacrificial layer.
Abstract:
Exemplary embodiments provide structures and methods for power devices with integrated clamp structures. The integration of clamp structures can protect the power device, e.g., from electrical overstress (EOS). In one embodiment, active devices can be formed over a substrate, while a clamp structure can be integrated outside the active regions of the power device, for example, under the active regions and/or inside the substrate. Integrating clamp structure outside active regions of power devices can maximize the active area for a given die size and improve robustness of the clamped device since the current will spread in the substrate by this integration.
Abstract:
A structure and method for a semiconductor device includes a silicon device layer and a gallium nitride (GaN) device layer. In an embodiment, the silicon device layer and the GaN device layer have upper surfaces which are coplanar with each other. In another embodiment, the GaN device layer does not directly underlie the silicon device layer, and the silicon device layer does not directly underlie the GaN device layer. The semiconductor device can further include a silicon-based semiconductor device formed on and/or within the silicon device layer, and a nitride-based semiconductor device formed on and/or within the GaN device layer. The GaN device layer can include a plurality of layers which can be formed as conformal blanket layers and then planarized, or which can be selectively formed then planarized.
Abstract:
A method and structure for a voltage converter including a trench field effect transistor (FET) and a trench guarded Schottky diode which is integrated with the trench FET. In an embodiment, a voltage converter can include a lateral FET, a trench FET, and a trench guarded Schottky diode integrated with the trench FET. A method to form a voltage converter can include the formation of a trench FET gate, a trench guarded Schottky diode gate, and a lateral FET gate using a single conductive layer such as a polysilicon layer.