Abstract:
A semiconductor memory device and a self-refresh method in which the semiconductor memory device includes a plurality of input/output ports having respective independent operation, a period of self-refresh through one of the plurality of input/output ports being subordinate to a kind of operation through another input/output port. Whereby, a refresh characteristic in a multi-port semiconductor memory device including a dual-port semiconductor memory device may be improved.
Abstract:
A multi-port semiconductor memory device having variable access paths and a method therefore are provided. The semiconductor memory device includes a plurality of input/output ports; a memory array divided into a plurality of memory areas; and a select control unit to variably control access paths between the memory areas and the input/output ports so that each memory area is accessed through at least one of the input/output ports.
Abstract:
A semiconductor package includes multiple embedded chips, each chip including a common circuit having substantially the same common function. The common circuit in a selected one of the chips is enabled. The common circuit in one or more other ones of the chips is disabled. As a result, the enabled common circuit performs the common function for the selected chip and the one or more other chips.
Abstract:
The semiconductor memory device includes a clock signal generating circuit, a precharge circuit, a write circuit, and an input/output circuit. The clock signal generating circuit generates a second clock signal having a second state of a constant interval irrespective of a period of a first clock signal. The precharge circuit precharges a data input/output line in response to a precharge signal. The write circuit transfers, during a write operation, input data signal to the data input/output line each time the second clock signal is a first state under the state that a power signal and the precharge signal are the first state. The input/output circuit transfers data transmitted to the data input/output line to a cell.
Abstract:
A semiconductor memory device has the skew between the individual transmission lines of a parallel transmission bus minimized by the addition of respective load transmission lines to each of the individual transmission lines in the parallel bus. A first circuit unit including a first parallel bank of internal circuits for generating internal control signals is formed adjacent to a predetermined region within a chip. A second circuit unit includes a second parallel bank of internal circuits for performing a predetermined operation in response to an output of the first circuit unit. The second circuit transmits signals to the first circuit over a parallel bus comprised of a plurality of transmission lines connected respectively between the individual internal circuits of the first and second circuit units. A plurality of load transmission lines are connected respectively to predetermined portions of the individual transmission lines to thereby equalize the loads of the transmission lines.
Abstract:
A synchronous dynamic random access memory capable of accessing data in a memory cell array therein in synchronism with a system clock from an external system such as a central processing unit (CPU). The synchronous DRAM receives an external clock and includes a plurality of memory banks each including a plurality of memory cells and operable in either an active cycle or a precharge cycle, a circuit for receiving a row address strobe signal and latching a logic level of the row address strobe signal in response to the clock, an address input circuit for receiving an externally generated address selecting one of the memory banks, and a circuit for receiving the latched logic level and the address from the address input circuit and for outputting an activation signal to the memory bank selected by the address and an inactivation signals to unselected memory banks when the latched logic level is a first logic level, so that the selected memory bank responsive to the activation signal operates in the active cycle while the unselected memory banks responsive to the inactivation signals operate in the precharge cycle.
Abstract:
A semiconductor memory device includes a semiconductor die and an input-output bump pad part. The semiconductor die includes a plurality of memory cell arrays. The input-output bump pad part is formed in a central region of the semiconductor die. The input-output bump pad part provides a plurality of channels for connecting each of the memory cell arrays independently to an external device. The semiconductor memory device may adopt the multi-channel interface, thereby having high performance with relatively low power consumption.
Abstract:
A method of outputting temperature data in a semiconductor device and a temperature data output circuit are provided. A pulse signal is generated in response to a booting enable signal activated in response to a power-up signal and the generation is inactivated in response to a mode setting signal during a power-up operation. A comparison signal is generated in response to the pulse signal by comparing a reference voltage independent of temperature with a sense voltage that varies with temperature change. The temperature data is changed in response to the comparison signal. Thus, the temperature data output circuit can rapidly output the exact temperature of the semiconductor device measured during the power-up operation.
Abstract:
A semiconductor memory device is disclosed. The semiconductor device includes a memory cell array, a clock signal generator configured to receive an external clock signal from the outside of the memory device and output an internal clock signal, and a data output unit configured to receive an internal data signal from the memory cell array and output a read data signal in response to the internal clock signal. The semiconductor memory device also includes a read data strobe unit configured to output a read data strobe signal having a cycle time of n times (n is an integer equal to or more than 2) a cycle time of the internal clock signal, based on the internal clock signal.
Abstract:
A multi-port semiconductor memory device having variable access paths and a method therefor are provided. The semiconductor memory device includes a plurality of input/output ports; a memory array divided into a plurality of memory areas; and a select control unit to variably control access paths between the memory areas and the input/output ports so that each memory area is accessed through at least one of the input/output ports.