Abstract:
A semiconductor device and method is disclosed. In one example, the method for forming a semiconductor device includes forming a trench extending from a front side surface of a semiconductor substrate into the semiconductor substrate. The method includes forming of material to be structured inside the trench. Material to be structured is irradiated with a tilted reactive ion beam at a non-orthogonal angle with respect to the front side surface such that an undesired portion of the material to be structured is removed due to the irradiation with the tilted reactive ion beam while an irradiation of another portion of the material to be structured is masked by an edge of the trench.
Abstract:
A method of determining the carbon content in a silicon sample may include: generating electrically active polyatomic complexes within the silicon sample. Each polyatomic complex may include at least one carbon atom. The method may further include: determining a quantity indicative of the content of the generated polyatomic complexes in the silicon sample, and determining the carbon content in the silicon sample from the determined quantity.
Abstract:
A semiconductor device includes at least one transistor structure. The at least one transistor structure includes an emitter or source terminal, and a collector or drain terminal. A carbon concentration within a semiconductor substrate region located between the emitter or source terminal and the collector or drain terminal varies between the emitter or source terminal and the collector or drain terminal.
Abstract:
A semiconductor device includes a semiconductor body having a semiconductor body material with a dopant diffusion coefficient that is smaller than the corresponding dopant diffusion coefficient of silicon, at least one first semiconductor region doped with dopants of a first conductivity type and having a columnar shape that extends into the semiconductor body along an extension direction, wherein a respective width of the at least one first semiconductor region continuously increases along the extension direction; and at least one second semiconductor region included in the semiconductor body. The at least one second semiconductor region is arranged adjacent to the at least one first semiconductor region, and is doped with dopants of a second conductivity type complementary to the first conductivity type.
Abstract:
A method for producing a semiconductor is disclosed, the method having: providing a semiconductor body having a first side and a second side; forming an n-doped zone in the semiconductor body by a first implantation into the semiconductor body via the first side to a first depth location of the semiconductor body; and forming a p-doped zone in the semiconductor body by a second implantation into the semiconductor body via the second side to a second depth location of the semiconductor body, a pn-junction forming between said n-doped zone and said p-doped zone in the semiconductor body.
Abstract:
A method for forming a semiconductor device comprises forming an amorphous or polycrystalline semiconductor layer adjacently to at least one semiconductor doping region having a first conductivity type located in a semiconductor substrate. The method further comprises incorporating dopants into the amorphous or polycrystalline semiconductor layer during or after forming the amorphous or polycrystalline semiconductor layer. The method further comprises annealing the amorphous or polycrystalline semiconductor layer to transform at least a part of the amorphous or polycrystalline semiconductor layer into a substantially monocrystalline semiconductor layer and to form at least one doping region having the second conductivity type in the monocrystalline semiconductor layer, such that a p-n junction is formed between the at least one semiconductor doping region having the first conductivity type and the at least one doping region having the second conductivity type.
Abstract:
An ion source for an implanter includes a first solid state source electrode disposed in an ion source chamber. The first solid state source electrode includes a source material coupled to a first negative potential node. A second solid state source electrode is disposed in the ion source chamber. The second solid state source electrode includes the source material coupled to a second negative potential node, and the first solid state source electrode and the second solid state source electrode are configured to produce ions to be implanted by the implanter.
Abstract:
A semiconductor device includes a semiconductor body with parallel first and second surfaces and containing hydrogen-related donors. A concentration profile of the hydrogen-related donors vertical to the first surface includes a maximum value of at least 1E15 cm−3 at a first distance to the first surface and does not fall below 1E14 cm−3 over at least 60% of an interval between the first surface and the first distance.
Abstract:
Disclosed are a method and a semiconductor device. The method includes implanting recombination center atoms via a first surface into a semiconductor body, and causing the implanted recombination center atoms to diffuse in the semiconductor body in a first diffusion process.
Abstract:
An ion implantation apparatus includes an ion beam directing unit, a substrate support, and a controller. The controller is configured to effect a relative movement between an ion beam passing the ion beam directing unit and the substrate support. A beam track of the ion beam on a substrate mounted on the substrate support includes circles or a spiral.