Abstract:
An apparatus is described. The apparatus includes a point-to-point link interface circuit. The point-to-point link interface circuit is to support communication with a level of a multi-level system memory. The point-to-point link interface circuit includes a circuit to interlace payload data with cyclic redundancy check (CRC) values, where, different data segments of the payload are each appended with its own respective CRC value.
Abstract:
Techniques for embedded high speed serial interface methods are described herein. The techniques include an apparatus for sideband signaling including a first serial sideband link module and a second serial sideband link module. The first serial sideband link module is to propagate packets from an upstream port to a downstream port via a first signaling lane, and the second serial sideband link module is to propagate packets from the downstream port to the upstream port via a second signaling lane.
Abstract:
Component apparatuses with inter-component communication capabilities, and system having such component apparatuses are disclosed herein. In embodiments, such a component may include a number of control pins including a clock pin, a number of data pins, and a logic unit. The logic unit may be configured to receive a clock signal from another component through the clock pin, to provide an alert signal to the other component through a selected one of the control and data pins to initiate a transaction with the other component, to receive in response to the alert signal from the other component through the data pins a status request to determine nature of the transaction, and to provide in response to the status request to the other component through the data pins a status to indicate the nature of the transaction. The provision of the alert signal, the receipt of the status request and the provision of the status may be in reference to the clock signal. Other embodiments may be disclosed or claimed.
Abstract:
Particular embodiments described herein can offer a method for managing power for at least one processor that includes evaluating a plurality of ports associated with an electronic device; determining that a particular pin associated with at least one of the ports is not receiving a signal; disabling a squelch function associated with the electronic device; and gating power associated with a physical layer (PHY) of the electronic device.
Abstract:
A system-on-a-chip, such as a logical PHY, may be divided into hard IP blocks with fixed routing, and soft IP blocks with flexible routing. Each hard IP block may provide a fixed number of lanes. Using p hard IP blocks, where each block provides n data lanes, h=n*p total hard IP data lanes are provided. Where the system design calls for k total data lanes, it is possible that k≠h, so that [k/n] hard IP blocks provide h=n*p available hard IP data lanes. In that case, h−k lanes may be disabled. In cases where lane reversals occur, such as between hard IP and soft IP, bowtie routing may be avoided by the use of a multiplexer-like programmable switch within the soft IP.
Abstract translation:诸如逻辑PHY的片上系统可以被划分为具有固定路由的硬IP块和具有灵活路由的软IP块。 每个硬IP块可以提供固定数量的车道。 使用p硬IP块,其中每个块提供n个数据通道,h = n * p提供总硬IP数据通道。 在系统设计要求k个总数据通道的情况下,k≠h可以使得[k / n]硬IP块提供h = n * p可用的硬IP数据通道。 在这种情况下,h-k通道可能被禁用。 在发生通道反转的情况下,例如在硬IP和软IP之间,可以通过使用软IP内的多路复用器可编程开关来避免路由路由。
Abstract:
In one embodiment, a device having a link training state machine including a reconfiguration logic to perform a dynamic link reconfiguration of a physical link coupled between the device and a second device during a run-time in which the physical link does not enter a link down state, including transmission of a plurality of bandwidth change requests to the second device, each of the plurality of bandwidth change requests to request a bandwidth change from a first bandwidth to a second bandwidth. Other embodiments are described and claimed.
Abstract:
Component apparatuses with inter-component communication capabilities, and system having such component apparatuses are disclosed herein. In embodiments, such a component may include a number of control pins including a clock pin, a number of data pins, and a logic unit. The logic unit may be configured to receive a clock signal from another component through the clock pin, to provide an alert signal to the other component through a selected one of the control and data pins to initiate a transaction with the other component, to receive in response to the alert signal from the other component through the data pins a status request to determine nature of the transaction, and to provide in response to the status request to the other component through the data pins a status to indicate the nature of the transaction. The provision of the alert signal, the receipt of the status request and the provision of the status may be in reference to the clock signal. Other embodiments may be disclosed or claimed.
Abstract:
Systems or methods of the present disclosure may provide a peripheral component interconnect express (PCIe) device that comprises a programmable fabric. The programmable fabric comprises multiple PCIe physical functions. The programmable fabric also includes switch circuitry having one or more embedded endpoints that dynamically hides or exposes one or more of the multiple PCIe physical functions from a bare metal mode host server without using a reset.
Abstract:
An apparatus is provided that includes a set of registers, and an interface of a computing block. The computing block includes one of a physical layer block or a media access control layer block. The interface includes one or more pins to transmit asynchronous signals, one or more pins to receive asynchronous signals, and a set of pins to communicate particular signals to access the set of registers, where a set of control and status signals of a defined interface are mapped to respective bits of the set of registers.
Abstract:
An apparatus is provided that includes a set of registers, and an interface of a computing block. The computing block includes one of a physical layer block or a media access control layer block. The interface includes one or more pins to transmit asynchronous signals, one or more pins to receive asynchronous signals, and a set of pins to communicate particular signals to access the set of registers, where a set of control and status signals of a defined interface are mapped to respective bits of the set of registers.