Abstract:
Provided are field effect transistor (FET) assemblies and methods of forming thereof. An FET assembly may include a dielectric layer formed from tantalum silicon oxide and having the atomic ratio of silicon to tantalum and silicon (Si/(Ta+Si)) of less than 5% to provide a low trap density. The dielectric layer may be disposed over an interface layer, which is disposed over a channel region. The same type of the dielectric layer may be used a common gate dielectric of an nMOSFET (e.g., III-V materials) and a pMOSFET (e.g., germanium). The channel region may include one of indium gallium arsenide, indium phosphate, or germanium. The interface layer may include silicon oxide to provide a higher energy barrier. The dielectric layer may be formed using an atomic layer deposition technique by adsorbing both tantalum and silicon containing precursors on the deposition surface and then oxidizing both precursors in the same operation.
Abstract:
Methods for doping a three-dimensional semiconductor structure are disclosed. A conformal coating is formed on the three-dimensional semiconductor structure by Atomic Layer Deposition, and subsequent annealing causes dopant atoms to migrate into the three-dimensional semiconductor structure. Any residual conformal coating is then removed by etching. The semiconductor can be a type IV semiconductor such as Si, SiC, SiGe, or Ge, for which Sb and Te are suitable dopants. Sb and Te can be provided from a Ge2Sb2Te5 conformal coating. The semiconductor can also be a type III-V semiconductor such as InGaAs, GaAs, InAs, or GaSb, for which Sn and S are suitable dopants. Sn and S can be provided from a SnS conformal coating. The dopant concentration can be adjusted by precise control over the number of monolayers deposited in a conformal coating layer deposited by ALD.
Abstract:
Methods for improving contact resistance, for example, to a semiconductor region such as a source or a drain region, are disclosed. The methods can include depositing a layer on a substrate, wherein the layer can include a first element to form a silicide with the substrate and a second element to lower a contact resistance between the silicide and the substrate. The second element can include a dopant, which can enhance trap assisted tunneling or lower the Schottky barrier height between the silicide layer and the substrate.
Abstract:
Methods for improving contact resistance, for example, to a semiconductor region such as a source or a drain region, are disclosed. The methods can include exposing the substrate to an activated hydrogen species to remove contaminant layers such as native oxide layers followed by exposing the substrate to plasma activated dopant species to passivate the surface. The methods can further include depositing a layer on a substrate, wherein the layer can include a first element to form a silicide with the substrate and a second element to lower a contact resistance between the silicide and the substrate. The second element can include a dopant, which can enhance trap assisted tunneling or lower the Schottky barrier height between the silicide layer and the substrate. The cleaning, passivation, and deposition steps are performed in-situ without breaking vacuum.
Abstract:
Embodiments described herein provide indium-gallium-zinc oxide (IGZO) devices, such as IGZO thin-film transistors (TFTs), and methods for forming such devices. A substrate is provided. A gate electrode is formed above the substrate. A gate dielectric layer is formed above the gate electrode. An IGZO channel layer is formed above the gate dielectric layer. The IGZO channel layer includes crystalline IGZO. An electrode is formed above the IGZO channel layer. The electrode comprises titanium, aluminum, and nitrogen.
Abstract:
Embodiments described herein provide amorphous silicon thin-film transistors (a-Si TFTs) and methods for forming a-Si TFTs. A substrate is provided. A gate electrode is formed above the substrate. An a-Si channel layer is formed above the gate electrode. A contact layer is formed above the a-Si channel layer. The contact layer includes titanium, zinc, arsenic, or a combination thereof. A source electrode and a drain electrode are formed above the contact layer.
Abstract:
One or more small spot showerhead apparatus are used to provide dopant exposure and/or to deposit materials using CVD, PECVD, ALD, or PEALD on small spots in a site isolated, combinatorial manner. The small spot showerheads may be configured within a larger combinatorial showerhead to allow multi-layer film stacks to be deposited in a combinatorial manner. Anneal processes where the area of the process can be controlled such as laser annealing or site-isolated rapid thermal processing (RTP) can be used to vary the annealing conditions in a combinatorial manner.
Abstract:
SiC substrates are cleaned and provided to a process chamber. In-situ plasma surface treatments are applied to further clean the surface of the substrate. A dielectric interface layer is deposited in-situ to passivate the surface. Metal layers having a low work function are deposited above the dielectric interface layer. The stack is annealed at about 500C in forming gas to form low resistivity ohmic contacts to the SiC substrate. SiC substrates are cleaned and provided to a process chamber. In-situ plasma surface treatments are applied to further clean the surface of the substrate. A silicon oxide dielectric interface layer is deposited in-situ to passivate the surface. Optional plasma surface treatments are applied to further improve the performance of the silicon oxide dielectric interface layer. An aluminum oxide gate dielectric layer is deposited above the silicon oxide dielectric interface layer.
Abstract:
Contacts for semiconductor devices and methods of making thereof are disclosed. A method comprises forming a first layer on a semiconductor, the first layer comprising one or more metals; forming a second layer on the first layer, the second layer comprising the one or more metals, nitrogen and oxygen; and heating the first and second layer such that oxygen migrates from the second layer into the first layer and the first layer comprises a sub-stoichiometric metal oxide after heating. Exemplary embodiments use transition metals such as Ti in the first layer. After heating there is a sub-stoichiometric oxide layer of about 2.5 nm thickness between a metal nitride conductor and the semiconductor. The specific contact resistivity is less than about 7×10−9 Ω·cm2.
Abstract:
Embodiments described herein provide indium-gallium-zinc oxide (IGZO) devices, such as IGZO thin-film transistors (TFTs), and methods for forming such devices. A substrate is provided. A gate electrode is formed above the substrate. A gate dielectric layer is formed above the gate electrode. The gate dielectric layer includes titanium. An interface layer is formed above the gate dielectric layer. The interface layer includes silicon. An IGZO channel layer is formed above the interface layer. A source electrode and a drain electrode are formed above the IGZO channel layer.