Abstract:
A semiconductor device includes a first doping region extending from a main surface of a semiconductor substrate into the semiconductor substrate. Further, the semiconductor device includes a second doping region arranged adjacent to the first doping region. The first doping region includes at least one low doping dose portion extending from the main surface of the semiconductor substrate to the second doping region. A doping dose within the low doping dose portion of the first doping region is less than 3 times a breakdown charge. Additionally, the semiconductor device includes a first electrode structure in contact with the first doping region at the main surface of the semiconductor substrate. The work function of the first electrode structure at the main surface of the semiconductor substrate is larger than 4.9 eV or lower than 4.4 eV.
Abstract:
A field-effect semiconductor device having a semiconductor body with a main surface is provided. The semiconductor body includes, in a vertical cross-section substantially orthogonal to the main surface, a drift layer of a first conductivity type, a semiconductor mesa of the first conductivity type adjoining the drift layer, substantially extending to the main surface and having two side walls, and two second semiconductor regions of a second conductivity type arranged next to the semiconductor mesa. Each of the two second semiconductor regions forms a pn-junction at least with the drift layer. A rectifying junction is formed at least at one of the two side walls of the mesa. Further, a method for producing a heterojunction semiconductor device is provided.
Abstract:
An IGBT includes, in a single chip, an active region configured to conduct a forward load current between first and second load terminals at different sides of a semiconductor body. The active region is separated into at least first and second IGBT regions. At least 90% of the first IGBT region is configured to conduct, based on a first control signal, the forward load current. At least 90% of the second IGBT region is configured to conduct, based on a second control signal, the forward load current. A first MOS-channel-conductivity-to-area-ratio is determined by a total channel width in the first IGBT region divided by a total lateral area of first IGBT region. A second MOS-channel-conductivity-to-area-ratio is determined by a total channel width in the second IGBT region divided by a total lateral area of the second IGBT region. The second MOS-channel-conductivity-to-area-ratio amounts to less than 80% of the first MOS-channel-conductivity-to-area-ratio.
Abstract:
A semiconductor switching module includes an insulated gate bipolar transistor and a unipolar switching device. The insulated gate bipolar transistor includes a first transistor cell and a supplemental cell, wherein the first transistor cell includes a first gate and a first source and wherein the supplemental cell includes a second gate and a supplemental electrode. The unipolar switching device is based on a wide bandgap material and includes a third gate and a third source. The third gate and the second gate are electrically connected with each other and are disconnected from the first gate. The first source, the supplemental cell and the third source are electrically connected with each other.
Abstract:
In accordance with a method of forming a semiconductor device, an auxiliary structure is formed at a first surface of a silicon semiconductor body. A semiconductor layer is formed on the semiconductor body at the first surface. Semiconductor device elements are formed at the first surface. The semiconductor body is then removed from a second surface opposite to the first surface at least up to an edge of the auxiliary structure oriented to the second surface.
Abstract:
A semiconductor device includes a cell region having at least one device cell, wherein the at least one device cell includes a first device region of a first conductivity type. The semiconductor device further includes a drift region of a second conductivity type adjoining the first device region of the at least one device cell, a doped region of the first conductivity type adjoining the drift region, and charge carrier lifetime reduction means configured to reduce a charge carrier lifetime in the doped region of the first conductivity type.
Abstract:
A method for forming a field-effect semiconductor device includes: providing a wafer having a main surface and a first semiconductor layer of a first conductivity type; forming at least two trenches from the main surface partly into the first semiconductor layer so that each of the at least two trenches includes, in a vertical cross-section substantially orthogonal to the main surface, a side wall and a bottom wall, and that a semiconductor mesa is formed between the side walls of the at least two trenches; forming at least two second semiconductor regions of a second conductivity type in the first semiconductor layer so that the bottom wall of each of the at least two trenches adjoins one of the at least two second semiconductor regions; and forming a rectifying junction at the side wall of at least one of the at least two trenches.
Abstract:
A semiconductor device includes a drift zone of a first conductivity type in a semiconductor body. Controllable cells are configured to form a conductive channel connected with the drift zone in a first state. First zones of the first conductivity type as well as second zones and a third zone of a complementary second conductivity type are between the drift zone and a rear side electrode, respectively. The first, second and third zones directly adjoin the rear side electrode. The third zone is larger and has a lower mean emitter efficiency than the second zones.
Abstract:
The semiconductor substrate includes a high-ohmic semiconductor material with a conduction band edge and a valence band edge, separated by a bandgap, wherein the semiconductor material includes acceptor or donor impurity atoms or crystal defects, whose energy levels are located at least 120 meV from the conduction band edge, as well as from the valence band edge in the bandgap; and wherein the concentration of the impurity atoms or crystal defects is larger than 1×1012 cm−3.
Abstract translation:半导体衬底包括具有导带边缘和价带边缘的高电阻半导体材料,带隙由带隙分开,其中半导体材料包括受体或施主杂质原子或晶体缺陷,其能级位于至少120meV 导带边缘,以及带隙中的价带边缘; 并且其中杂质原子或晶体缺陷的浓度大于1×10 12 cm -3。
Abstract:
A power semiconductor device includes a first region in an active region of a semiconductor body and including first trenches each having a first trench electrode electrically connected to a gate terminal and a first trench insulator. A second region includes second trenches each having a second trench electrode electrically connected to the gate terminal and a second trench insulator. At least one of the following applies: a minimal thickness of each second trench insulator amounts to at least 120% of a corresponding minimal thickness of each first trench insulator; an average thickness of the second trench insulators amounts to at least 120% of an average thickness of the first trench insulators; a trench bottom thickness of each second trench insulator amounts to at least 120% of a corresponding trench bottom thickness of each first trench insulator; a minimal breakdown voltage of each second trench insulator amounts to at least 120% of a minimal breakdown voltage of each first trench insulator.