Abstract:
A method including forming at least one passive structure on a substrate by a build-up process; introducing one or more integrated circuit chips on the substrate; and introducing a molding compound on the at least one passive structure and the one or more integrated circuit chips. A method including forming at least one passive structure on a substrate by a three-dimensional printing process; introducing one or more integrated circuit chips on the substrate; and embedding the at least one passive structure and the one or more integrated circuit chips in a molding compound. An apparatus including a package substrate including at least one three-dimensional printed passive structure and one or more integrated circuit chips embedded in a molding material.
Abstract:
Embodiments of the present description include stacked microelectronic dice embedded in a microelectronic substrate and methods of fabricating the same. In one embodiment, at least one first microelectronic die is attached to a second microelectronic die, wherein an underfill material is provided between the second microelectronic die and the at least one first microelectronic die. The microelectronic substrate is then formed by laminating the first microelectronic die and the second microelectronic die in a substrate material.
Abstract:
Some forms relate to wearable computing devices that include a “touch pad” like interface. In some forms, the example wearable computing devices may be integrated with (or attached to) textiles (i.e. clothing). In other forms, the example wearable computing devices may be attached directly to the skin of someone (i.e., similar to a bandage) that utilizes any of the example wearable computing devices. The example wearable computing devices include a flexible touch pad that may allow a user of the wearable computing device to more easily operate the wearable computing device. The example wearable computing devices described herein may include a variety of electronics. Some examples include a power supply and/or a communication device among other types of electronics.
Abstract:
An interconnect adaptor may be fabricated having a substantially planar surface, to which a microelectronic package may be electrically attached, and a non-planar surface with at least one interconnect extending from the interconnect adaptor planar surface to the interconnect adaptor non-planar surface. The interconnect adaptor non-planar surface may be shaped to substantially conform to a shape of a microelectronic substrate to which it may be attached, which eliminates the need to bend or otherwise adapt the microelectronic package to conform to the microelectronic substrate.
Abstract:
Embodiments of the present description include stacked microelectronic dice embedded in a microelectronic substrate and methods of fabricating the same. In one embodiment, at least one first microelectronic die is attached to a second microelectronic die, wherein an underfill material is provided between the second microelectronic die and the at least one first microelectronic die. The microelectronic substrate is then formed by laminating the first microelectronic die and the second microelectronic die in a substrate material.
Abstract:
Embodiments of the present disclosure are directed to integrated circuit (IC) package assemblies with magnetic contacts, as well as corresponding fabrication methods and systems incorporating such magnetic contacts. A first IC substrate may have a first magnet coupled with a first electrical routing feature. A second IC substrate may have a second magnet coupled with a second electrical routing feature. The magnets may be embedded in the IC substrates and/or electrical routing features. The magnets may generate a magnetic field that extends across a gap between the first and second electrical routing features. Electrically conductive magnetic particles may be applied to one or both of the IC substrates to form a magnetic interconnect structure that extends across the gap. In some embodiments, magnetic contacts may be demagnetized by heating the magnets to a corresponding partial demagnetization temperature (PDT) or Curie temperature. Other embodiments may be described and/or claimed.