摘要:
Borderless self-aligned metal contacts to high density complementary metal oxide semiconductor (CMOS) circuits and methods for constructing the same. An example method includes creating an enclosed region for metal deposition defined by the gates of the adjacent transistors and an opposing pair of dielectric walls adjacent to source regions and drain regions of the adjacent transistors. The method further includes depositing a metal layer within the enclosed region. The metal contacts thus formed are self-aligned to the enclosed regions.
摘要:
Structure and method for fabricating a barrier layer that separates an electromechanical device and a CMOS device on a substrate. An example structure includes a protective layer encapsulating the electromechanical device, where the barrier layer may withstand an etch process capable of removing the protective layer, but not the barrier layer. The substrate may be silicon-on-insulator or a multilayer wafer substrate. The electromechanical device may be a microelectromechanical system (MEMS) or a nanoelectromechanical system (NEMS).
摘要:
A method of fabricating a FET device is provided that includes the following steps. A wafer is provided. At least one active area is formed in the wafer. A plurality of dummy gates is formed over the active area. Spaces between the dummy gates are filled with a dielectric gap fill material such that one or more keyholes are formed in the dielectric gap fill material between the dummy gates. The dummy gates are removed to reveal a plurality of gate canyons in the dielectric gap fill material. A mask is formed that divides at least one of the gate canyons, blocks off one or more of the keyholes and leaves one or more of the keyholes un-blocked. At least one gate stack material is deposited onto the wafer filling the gate canyons and the un-blocked keyholes. A FET device is also provided.
摘要:
A field effect transistor includes a metal carbide source portion, a metal carbide drain portion, an insulating carbon portion separating the metal carbide source portion from the metal carbide portion, a nanostructure formed over the insulating and carbon portion and connecting the metal carbide source portion to the metal carbide drain portion, and a gate stack formed on over at least a portion of the insulating carbon portion and at least a portion of the nanostructure.
摘要:
After formation of gate stacks, a carbon-based template layer is deposited over the gate stacks, and is optionally planarized to provide a planar top surface. A hard mask layer and a photoresist layer are subsequently formed above the carbon-based template layer. A pattern including openings is formed within the photoresist layer. The pattern is subsequently transferred through the hard mask layer and the carbon-based template layer with high selectivity to gate spacers to form self-aligned cavities within the carbon-based template layer. Contact structures are formed within the carbon-based template layer by a damascene method. The hard mask layer and the carbon-based template layer are subsequently removed selective to the contact structures. The contact structures can be formed as contact bar structures or contact via structures. Optionally, a contact-level dielectric layer can be subsequently deposited.
摘要:
Improved fin field effect transistor (FinFET) devices and methods for the fabrication thereof are provided. In one aspect, a method for fabricating a field effect transistor device comprises the following steps. A substrate is provided having a silicon layer thereon. A fin lithography hardmask is patterned on the silicon layer. A dummy gate structure is placed over a central portion of the fin lithography hardmask. A filler layer is deposited around the dummy gate structure. The dummy gate structure is removed to reveal a trench in the filler layer, centered over the central portion of the fin lithography hardmask, that distinguishes a fin region of the device from source and drain regions of the device. The fin lithography hardmask in the fin region is used to etch a plurality of fins in the silicon layer. The trench is filled with a gate material to form a gate stack over the fins. The filler layer is removed to reveal the source and drain regions of the device, wherein the source and drain regions are intact and self-aligned with the gate stack.
摘要:
Narrow-body FETs, such as, FinFETs and trigates, exhibit superior short-channel characteristics compared to thick-body devices, such as planar bulk Si FETs and planar partially-depleted SOI (PDSOI) FETs. A common problem, however, with narrow-body devices is high series resistance that often negates the short-channel benefits. The high series resistance is due to either dopant pile-up at the SOI/BOX interface or dopant diffusion into the BOX. This disclosure describes a novel narrow-body device geometry that is expected to overcome the high series resistance problem.
摘要:
Semiconductor devices and methods that include forming a fin field effect transistor by defining a fin hardmask on a semiconductor layer, forming a dummy structure over the fin hardmask to establish a planar area on the semiconductor layer, removing a portion of the fin hardmask that extends beyond the dummy structure, etching a semiconductor layer adjacent to the dummy structure to produce recessed source and drain regions, removing the dummy structure, etching the semiconductor layer in the planar area to produce fins, and forming a gate stack over the fins.
摘要:
An anisotropic silicon nitride etch provides selectivity to silicon and silicon oxide by forming a fluorohydrocarbon-containing polymer on silicon surfaces and silicon oxide surfaces. Selective fluorohydrocarbon deposition is employed to provide selectivity to non-nitride surfaces. The fluorohydrocarbon-containing polymer interacts with silicon nitride to form a volatile compound, thereby enabling etching of silicon nitride. The fluorohydrocarbon-containing polymer interacts with silicon oxide at a low reaction rate, retarding, or completely stopping, the etching of silicon oxide. The fluorohydrocarbon-containing polymer does not interact with silicon, and protects silicon from the plasma. The anisotropic silicon nitride etch can be employed to etch silicon nitride selective to silicon and silicon oxide in any dimension, including small dimensions less than 50 nm.
摘要:
A DRAM cell and method for storing information in a dynamic random access memory using an electrostatic actuator beam to make an electrical connection between a storage capacitor and a bit line.