Abstract:
A method is described that facilitates inter-layer dielectric fill-in among transistors in a densely-configured array of an integrated circuit. An etch process that exploits a micro-loading effect to create a T-shaped profile between transistors is disclosed. The micro-loading has a negligible effect on transistors in a peripheral region of the integrated circuit.
Abstract:
A memory device includes a first stack structure, a second stack structure, a channel pillar, a storage layer, and a conductive pillar. The first stack structure includes a first insulating layer and a first conductive layer located on the first insulating layer. The second stack structure is located on the first stack structure and includes a plurality of second conductive layers and a plurality of second insulating layers which alternate with each other. The channel pillar penetrates through the second stack structure and extends to the first stack structure. The storage layer is located between the channel pillar and the first stack structure and between the channel pillar and the second stack structure. The conductive pillar is located in the first conductive layer and electrically connected to the first conductive layer and the substrate.
Abstract:
Provided is a method of fabricating a semiconductor device, including the following. A first material layer, a second material layer and a mask layer are formed on a substrate. A portion of the second material layer is removed by performing a first etching process with the mask layer as a mask, so as to expose the first material layer and form a first pattern layer and a second pattern layer. A portion of the first material layer is removed by performing a second etching process with the mask layer as a mask, so as to expose a portion of the substrate. A portion of the substrate is removed by performing a third etching process with the mask layer as a mask, so as to form first trenches and second trenches. Sidewalls of the second trenches and a surface of the substrate form at least two different angles.
Abstract:
Provided is a memory device including a substrate, a plurality of tunneling dielectric layers, a plurality of isolation structures, and a plurality of cap layers. The tunneling dielectric layers are located on the substrate. Each isolation structure has an upper portion and a lower portion. The lower portions of the isolation structures are located in the substrate and arranged alternately with the tunneling dielectric layers along a first direction. The upper portions of the isolation structures are located on the lower portions. The cap layers are located on the upper portions. A top surface of the cap layer is a planar surface.
Abstract:
A cluster tool is disclosed that can increase throughput of a wafer fabrication process by facilitating removal of barrier overhang in contact holes of contact film stacks. Individual chambers of the cluster tool provide for deposition of barrier material onto a semiconductor structure, depositing over with an amorphous carbon film (ACF), etching back the ACF, and etching a corner region of the contact hole. Removal of the barrier overhang improves the quality of metal fill-in of the contact hole. An expectedly ensuing feature entails a technique in which filling-in of the contact hole with a metal such as tungsten can be achieved with attenuated or eliminated adverse consequence.
Abstract:
A three-dimensional stacked IC device includes a stack of at least first, second, third and fourth contact levels at an interconnect region. Each contact level has a conductive layer and an insulation layer. First, second, third and fourth electrical conductors pass through portions of the stack of contact levels. The first, second, third and fourth electrical conductors are in electrical contact with the first, second, third and fourth conductive layers, respectively. A dielectric sidewall spacer circumferentially surrounds the second, third and fourth electrical conductors so that the second, third and fourth electrical conductors only electrically contact the respective second, third and fourth conductive layers.
Abstract:
Effects of copper oxide formation in semiconductor manufacture are mitigated by etching with sulfide plasmas. The plasmas form protective copper sulfide films on copper surfaces and prevent copper oxide formation. When copper oxide formation does occur, the sulfide plasmas are able to transform the copper oxide into acceptable or more conductive copper compounds. Non-oxide copper compounds are removed using clear wet strips.
Abstract:
A method of eliminating overhang in a contact hole formed in a contact film stack is described. A liner layer is overlaid on the contact film stack, the liner also coating the contact hole. A portion of the liner is removed to expose the overhang, and the exposed overhang is removed. The liner is also used to fill-in a bowing profile of the contact hole, thereby rendering sidewalls of the contact hole smooth and straight suitable for metal fill-in while suppressing piping defects.
Abstract:
A three-dimensional stacked IC device includes a stack of at least first, second, third and fourth contact levels at an interconnect region. Each contact level has a conductive layer and an insulation layer. First, second, third and fourth electrical conductors pass through portions of the stack of contact levels. The first, second, third and fourth electrical conductors are in electrical contact with the first, second, third and fourth conductive layers, respectively. A dielectric sidewall spacer circumferentially surrounds the second, third and fourth electrical conductors so that the second, third and fourth electrical conductors only electrically contact the respective second, third and fourth conductive layers.