摘要:
A method is provided for fabricating a nanochannel. The method comprises providing a microchannel and controlling collapse of the microchannel so that it collapses to form a nanochannel of desired dimensions. The method employs a collapsible, flexible material such as the elastomer polydimethylsiloxane (PDMS) to form the nanochannel. A master is provided that is configured to have geometric conditions that promote a desired frequency of microchannel collapse. A collapsible material having a stiffness that also promotes a desired frequency of microchannel collapse is molded on the master. The molded collapsible material is removed from the master and bonded to a base, thereby forming the microchannel, which then collapses (or is collapsed) to form the nanochannel of desired dimensions. Nanofluidic and microfluidic devices comprising complex nanochannel structures and micro to nanochannel transitions are also provided.
摘要:
The invention teaches electrospun light-emitting fibers made from ionic transition metal complexes (“iTMCs”) such as [Ru(bpy)3]2+(PF6−)2]/PEO mixtures with dimensions in the 10.0 nm to 5.0 micron range and capable of highly localized light emission at low operating voltages such as 3-4 V with turn-on voltages approaching the band-gap limit of the organic semiconductor that may be used as point source light emitters on a chip.
摘要:
An active micromixer uses a surface acoustic wave, preferably a Rayleigh wave, propagating on a piezoelectric substrate to induce acoustic streaming in a fluid in a microfluidic channel. The surface acoustic wave can be generated by applying an RF excitation signal to at least one interdigital transducer on the piezoelectric substrate. The active micromixer can rapidly mix quiescent fluids or laminar streams in low Reynolds number flows. The active micromixer has no moving parts (other than the SAW transducer) and is, therefore, more reliable, less damaging to sensitive fluids, and less susceptible to fouling and channel clogging than other types of active and passive micromixers. The active micromixer is adaptable to a wide range of geometries, can be easily fabricated, and can be integrated in a microfluidic system, reducing dead volume. Finally, the active micromixer has on-demand on/off mixing capability and can be operated at low power.
摘要:
The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.
摘要:
The present invention relates to compositions, methods, and uses for isolated biomolecule-containing fibers. The invention also relates to isolated, elongated biopolymers such as nucleic acids, polypeptides, lipids, and carbohydrates within fibers. The invention relates to methods of detecting and analyzing biomolecules in fibers using light, electrons, and neutrons. The invention further relates to methods of determining the sequence, structure, and properties of isolated, elongated biopolymers fixed within fibers.
摘要:
The present invention is directed to a method and an apparatus for analysis of an analyte. The method involves providing a zero-mode waveguide which includes a cladding surrounding a core where the cladding is configured to preclude propagation of electromagnetic energy of a frequency less than a cutoff frequency longitudinally through the core of the zero-mode waveguide. The analyte is positioned in the core of the zero-mode waveguide and is then subjected, in the core of the zero-mode wave guide, to activating electromagnetic radiation of a frequency less than the cut-off frequency under conditions effective to permit analysis of the analyte in an effective observation volume which is more compact than if the analysis were carried out in the absence of the zero-mode waveguide.
摘要:
The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.
摘要:
A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidic channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.
摘要:
Nanofibers are formed using electrospray deposition from microfluidic source. The source is brought close to a surface, and scanned in one embodiment to form oriented or patterned fibers. In one embodiment, the surface has features, such as trenches on a silicon wafer. In further embodiments, the surface is rotated to form patterned nanofibers, such as polymer nanofibers. The nanofibers may be used as a mask to create features, and as a sacrificial layer to create nanochannels.
摘要:
Multiplexed electrospray deposition apparatus capable of delivering picoliter volumes of one or more substances is disclosed. The apparatus may include a unitary planar dispenser etched from a silicon wafer through microfabrication or micromachining technology. The apparatus may be used as a deposition tool for making protein microarrays in a noncontact mode. Upon application of potential difference in the range of 7-9 kV, the substances may be dispensed directly, not through a collimating mask, onto a substrate with microhydrogel features functionalized with an anchoring agent.