Abstract:
An implantable medical system for electrical recording and or providing therapy to a plurality of tissue sites without damage to surrounding blood vessels is disclosed comprising: an implant body having a plurality of therapy elements, the elements being hingedly attached at one end to the surface of the body and releasably extendable outward from the surface of the body at the other end; a release mechanism for each of the elements; and a coating material covering the body and the elements; wherein upon dissolution of the coating material after implantation, the release mechanism is capable of causing the elements to extend outward at one end from the surface of the body and into a plurality of tissue sites without damage to the surrounding blood vessels. The method of implanting the system into a body is also disclosed.
Abstract:
A device is provided that includes a battery layer on a substrate, where a first battery cell is formed in the battery layer. The first battery cell includes a first anode, a first cathode, and a first electrolyte arranged between the first anode and the first cathode, where the first anode, the first cathode, and the first electrolyte are arranged in the battery layer such that perpendicular projections onto the substrate of each of the first anode and the first cathode are non-overlapping. A method of manufacturing such device is also provided. A system is also provide that includes such device for supplying power to an electronic device.
Abstract:
The invention provides an implantable multi-electrode device (300) and related methods and apparatuses. In one embodiment, the invention includes an implantable device (300) comprising: an assembly block (320); and a plurality of leads (340 . . . 348) radiating from the assembly block (320), each of the plurality of leads (340 . . . 348) containing at least one electrode (342A), such that the electrodes are distributed within a three-dimensional space, wherein the assembly block (320) includes a barb (350) for anchoring the assembly block (320) within implanted tissue.
Abstract:
The invention relates to a method of determining a charged particle concentration in an analyte (100), the method comprising steps of: i) determining at least two measurement points of a surface-potential versus interface-temperature curve (c1, c2, c3, c4), wherein the interface temperature is obtained from a temperature difference between a first interface between a first ion-sensitive dielectric (Fsd) and the analyte (100) and a second interface between a second ion-sensitive dielectric (Ssd) and the analyte (100), and wherein the surface-potential is obtained from a potential difference between a first electrode (Fe) and a second electrode (Se) onto which said first ion-sensitive dielectric (Fsd) and said second ion-sensitive dielectric (Ssd) are respectively provided, And ii) calculating the charged particle concentration from locations of the at least two measurement points of said curve (c1, c2, c3, c4). This method, which still is a potentiometric electrochemical measurement, exploits the temperature dependency of a surface-potential of an ion-sensitive dielectric in an analyte. The invention further provides an electrochemical sensor deny for determining a charged particle concentration in an analyte. The invention also provides various sensors which can be used to determine the charged particle concentration, i.e. EGFET's and EIS capacitors.
Abstract:
A sensor module (130) for a catheter (110), the sensor module (130) comprising a biofilm detection unit (131) adapted for detecting a characteristic of a biofilm (132) and electric circuitry (135, 800) for providing an output signal indicative of a result of the detection.
Abstract:
A device is provided that includes a battery layer on a substrate, where a first battery cell is formed in the battery layer. The first battery cell includes a first anode, a first cathode, and a first electrolyte arranged between the first anode and the first cathode, where the first anode, the first cathode, and the first electrolyte are arranged in the battery layer such that perpendicular projections onto the substrate of each of the first anode and the first cathode are non-overlapping. A method of manufacturing such device is also provided. A system is also provide that includes such device for supplying power to an electronic device.
Abstract:
Disclosed is a semiconductor device comprising a stack of patterned metal layers separated by dielectric layers, the stack comprising a first conductive support structure and a second conductive support structure and a cavity in which an inertial mass element comprising at least one metal portion is conductively coupled to the first support structure and the second support structure by respective conductive connection portions, at least one of said conductive connection portions being designed to break upon the inertial mass element being exposed to an acceleration force exceeding a threshold defined by the dimensions of the conductive connection portions. A method of manufacturing such a semiconductor device is also disclosed.
Abstract:
Disclosed is a semiconductor device comprising a stack of patterned metal layers separated by dielectric layers, the stack comprising a first conductive support structure and a second conductive support structure and a cavity in which an inertial mass element comprising at least one metal portion is conductively coupled to the first support structure and the second support structure by respective conductive connection portions, at least one of said conductive connection portions being designed to break upon the inertial mass element being exposed to an acceleration force exceeding a threshold defined by the dimensions of the conductive connection portions. A method of manufacturing such a semiconductor device is also disclosed.
Abstract:
An electrochemical sensor device including a sensor chip having an integrated electrochemical sensor element; and a substrate having a first surface on which the sensor chip is mounted, the substrate comprising a reference electrode structure for the integrated electrochemical sensor element, the reference electrode structure connected to the sensor chip via an electrical connection on the first surface of the substrate.
Abstract:
A sensor, electrically connected to transponder, is calibrated in an environment of operational use of the transponder. The calibrating uses as a reference a value of a parameter representative of the environment.