Abstract:
Processing equipment for the metallization of a plurality of workpieces are provided. The equipment comprising a controlled atmospheric region isolated from external oxidizing ambient with at least one deposition zone for the application of a metal layer on a workpiece. A transport system moves the workpiece positioned in a batch carrier plate through the controlled atmospheric region.
Abstract:
Fabrication methods and structures relating to multi-level metallization for solar cells as well as fabrication methods and structures for forming back contact solar cells are provided.
Abstract:
Laser patterning methods utilize a laser absorbent hard mask in combination with wet etching to form patterned solar cell doped regions to improve cell efficiency by avoiding laser ablation of an underlying semiconductor substrate associated with ablation of an overlying transparent passivation layer.
Abstract:
Back contact back junction solar cell and methods for manufacturing are provided. The back contact back junction solar cell comprises a substrate having a light capturing frontside surface with a passivation layer, a doped base region, and a doped backside emitter region with a polarity opposite the doped base region. A backside passivation layer and patterned reflective layer on the emitter form a light trapping backside mirror. An interdigitated metallization pattern is positioned on the backside of the solar cell and a permanent reinforcement provides support to the cell.
Abstract:
The laser patterning methods utilizing a laser absorbent hard mask in combination with wet etching to form patterned solar cell doped regions which may further improve cell efficiency by completely avoiding laser ablation of an underlying semiconductor substrate associated with ablation of an overlying transparent passivation layer.
Abstract:
Fabrication methods and structures relating to backplanes for back contact solar cells that provide for solar cell substrate reinforcement and electrical interconnects are described. The method comprises depositing an interdigitated pattern of base electrodes and emitter electrodes on a backside surface of a semiconductor substrate, attaching a prepreg backplane to the interdigitated pattern of base electrodes and emitter electrodes, forming holes in the prepreg backplane which provide access to the first layer of electrically conductive metal, and depositing a second layer of electrically conductive metal on the backside surface of the prepreg backplane forming an electrical interconnect with the first layer of electrically conductive metal through the holes in the prepreg backplane.
Abstract:
Annealing solutions providing damage-free laser patterning utilizing auxiliary heating to anneal laser damaged ablation regions are provided herein. Ablation spots on an underlying semiconductor substrate are annealed during or after pulsed laser ablation patterning of overlying transparent passivation layers.
Abstract:
Passivated contact structures and fabrication methods for back contact back junction solar cells are provided. According to one example embodiment, a back contact back junction photovoltaic solar cell is described that has a semiconductor light absorbing layer having a front side and a backside having base regions and emitter regions. A passivating dielectric insulating layer is positioned on the base regions. A first level base and emitter metallization contacts the emitter regions and passivating dielectric insulating layer on the base regions. An electrically insulating backplane is positioned on the first level base and emitter metallization. A second level metallization contacts the first level base and emitter metallization through conductive vias in the electrically insulating backplane.
Abstract:
The present application provides effective and efficient structures and methods for the formation of solar cell base and emitter regions and passivation layers using laser processing. Laser absorbent passivation materials are formed on a solar cell substrate and patterned using laser ablation to form base and emitter regions.
Abstract:
A photovoltaic solar cell is described that, according to one example embodiment, includes a semiconductor light absorbing layer and a dielectric stack on at least one of a front side of the light absorbing layer or a back side of the light absorbing layer. The dielectric stack includes a tunneling dielectric layer being sufficiently thin for charge carriers to tunnel across, and an overlaying dielectric layer being a different material than the overlaying dielectric. The solar cell also includes an electrically conductive contact physically contacting the overlaying dielectric. The electrically conductive contact and the overlaying dielectric together have either a work function suitable for selective collection of electrons that closely matches a conduction band of the light absorbing layer, or a work function suitable for selective collection of holes that closely matches a valence band of the light absorbing layer.