Abstract:
Disclosed herein is a power semiconductor device, including: a drift layer formed on the first surface of the semiconductor substrate, a well layer of a first conductive type, formed on the drift layer, a trench formed to reach the drift layer through the well layer, a first electrode formed in the trench, a second conductive type of second electrode region formed on the well layer, including a first region contacting the trench in a perpendicular direction and a second region spaced apart from the trench in a parallel direction and being perpendicular to the first region, a first conductive type of second electrode region formed to contact a side surface of the second conductive type of second electrode region, and a second electrode formed on the well layer and electrically connected to the second conductive type of second electrode region and the first conductive type of second electrode region.
Abstract:
There is provided a power semiconductor device, including a first conductive type drift layer; a second conductive type body layer formed on the drift layer, a second conductive type collector layer formed below the drift layer; a first gate formed by penetrating through the body layer and a portion of the drift layer, a first conductive type emitter layer formed in the body layer and formed to be spaced apart from the first gate, a second gate covering upper portions of the body layer and the emitter layer and formed as a flat type gate on the first gate, and a segregation stop layer formed between contact surfaces of the first and second gates with the body layer, the emitter layer, and the drift layer.
Abstract:
There is provided a leadless package type power semiconductor module. According to an exemplary embodiment of the present disclosure, the leadless package type power semiconductor module includes: connection terminals of a surface mounting type (SMT) formed at edges at which respective sides of four surfaces meet each other; a first mounting area connected to the connection terminals through a bridge to be disposed at a central portion thereof and mounted with power devices or control ICs electrically connected to the power devices to control the power devices; and second mounting areas formed between the connection terminals and mounted with the power devices or the control ICs, wherein the first mounting area is disposed at a different height from the second mounting area through the bridge to generate a phase difference from the second mounting area. Therefore, it is possible to implement a high-integration, high-performance, and small power semiconductor module by applying a three-dimensional structure deviating from a one-dimensional flat structure.
Abstract:
There is provided a leadless package type power semiconductor module. According to an exemplary embodiment of the present disclosure, the leadless package type power semiconductor module includes: connection terminals of a surface mounting type (SMT) formed at edges at which respective sides of four surfaces meet each other; a first mounting area connected to the connection terminals through a bridge to be disposed at a central portion thereof and mounted with power devices or control ICs electrically connected to the power devices to control the power devices; and second mounting areas formed between the connection terminals and mounted with the power devices or the control ICs, wherein the first mounting area is disposed at a different height from the second mounting area through the bridge to generate a phase difference from the second mounting area. Therefore, it is possible to implement a high-integration, high-performance, and small power semiconductor module by applying a three-dimensional structure deviating from a one-dimensional flat structure.
Abstract:
A power semiconductor device may include: an active region having a current flowing through a channel formed therein at the time of a turn-on operation of the power semiconductor device; a termination region formed in the vicinity of the active region; a plurality of first trenches formed lengthwise in one direction in the active region; and at least one or more second trenches formed lengthwise in one direction in the termination region. The second trench has a depth deeper than that of the first trench.
Abstract:
A power factor correction circuit may include a boost converter circuit in which a plurality of boost circuits including a boost inductor, a rectifying diode, and a boost switch are connected with each other; and a snubber circuit including a snubber inductor and a snubber switch so as to snubber the boost converter circuit. The snubber inductor may be controlled so as to be turned on before the boost inductor is turned on to apply zero voltage to the boost inductor. It is possible to reduce switching loss occurring when the boost switch is turned on and increase efficiency of an AC-DC power supply apparatus.
Abstract:
A power semiconductor device may include: a first conductive type drift layer in which trench gates are formed; a second conductive type well region formed on the drift layer so as to contact the trench gate; a first conductive type source region formed on the well region so as to contact the trench gate; and a device protection region formed below a height of a lowermost portion of the source region in a height direction.
Abstract:
There is provided a power semiconductor device including: a first semiconductor region of a first conductivity type; second semiconductor regions formed in the first semiconductor region and being of a second conductivity type; a well region formed above the second semiconductor regions and being of the second conductivity type; and a source region formed in the well region and being of the first conductivity type, wherein the second semiconductor regions include 1 to n layers formed from a lower portion of the device extending a in a direction of height of the device, and in the case that the widest width of the of the second semiconductor region of the nth layer is Pn, P1
Abstract:
Disclosed herein is a power factor correction circuit, including: a boost converter circuit in which a plurality of boost circuits including a boost inductor, a rectifying diode, and a boost switch are connected with each other; and a snubber circuit including a snubber inductor and a snubber switch so as to snubber the boost converter circuit. The snubber inductor is controlled so as to be turned on before the boost inductor is turned on to apply zero voltage to the boost inductor. It is possible to reduce switching loss occurring when the boost switch is turned on and increase efficiency of an AC-DC power supply apparatus.
Abstract:
Disclosed herein is a semiconductor device including: a base substrate; a first nitride semiconductor layer formed on the base substrate; a second nitride semiconductor layer formed on the first nitride semiconductor layer; a cathode electrode formed on one side of the second nitride semiconductor layer; an anode electrode having one end and the other end, one end being recessed at the other side of the second nitride semiconductor layer up to a predetermined depth, and the other end being spaced apart from the cathode electrode and formed to be extended up to an upper portion of the cathode electrode; and an insulating film formed on the second nitride semiconductor layer between the anode electrode and the cathode electrode so as to cover the cathode electrode.