Abstract:
An interference control method of a power transmitting unit (PTU) includes determining whether the PTU is in an interference environment in which interference by a neighbor PTU occurs, and controlling a communication parameter of either one or both of the neighbor PTU and a power receiving unit (PRU) in response to a result of the determining being that the PTU is in the interference environment.
Abstract:
A resonance power transmission system, and a method of controlling transmission and reception of a resonance power are provided. According to one embodiment, a method of controlling resonance power transmission in a resonance power transmitter may include: transmitting resonance power to a resonance power receiver, the resonance power having resonance frequencies which vary with respect to a plurality of time intervals; and receiving, from the resonance power receiver, information regarding the resonance frequency having the highest power transmission efficiency among the resonance frequencies used in the time intervals.
Abstract:
In one example embodiment, a semiconductor light emitting device includes a light emitting structure including a first conductivity-type semiconductor layer, an active layer, and a second conductivity-type semiconductor layer. The second conductivity-type semiconductor layer and the active layer having at least one contact hole exposing a region of the first conductivity-type semiconductor layer. The semiconductor light emitting device further includes at least one columnar structure disposed in the exposed region of the first conductivity-type semiconductor layer within the at least one contact hole. The semiconductor light emitting device further includes a first electrode disposed on the exposed region of the first conductivity-type semiconductor layer in which the at least one columnar structure is disposed, the first electrode being connected to the first conductivity-type semiconductor layer. The semiconductor light emitting device further includes a second electrode connected to the second conductivity-type semiconductor layer.
Abstract:
A resonant apparatus in a wireless power transmission system, includes a main resonant unit configured to form magnetic resonant coupling between the resonant apparatus and a resonator. The resonant apparatus further includes a field guiding resonant unit configured to focus a magnetic field on an internal portion of the main resonant unit, and a field additive resonant unit configured to adjust a magnitude of a magnetic field formed between the main resonant unit and the field guiding resonant unit.
Abstract:
An electronic device and method for transmitting and receiving a wireless power are provided. An electronic device for transmitting and receiving wireless power may include a resonator configured to operate, based on a plurality of operating modes of the electronic device including a power reception mode, a relay mode, and a power transmission mode, wherein: (i) in the power reception mode, the resonator is configured to receive power from a wireless power transmitter, (ii) in the relay mode, the resonator is configured to relay power received from the wireless power transmitter to a wireless power receiver, and (iii) in the power transmission mode, the resonator is configured to transmit power to the wireless power receiver; and a path controller configured to control at least one electrical pathway of electronic device based on the operating mode.
Abstract:
A semiconductor light emitting device includes a semiconductor stack including a first conductive semiconductor layer including a first surface, a second conductive semiconductor layer including a second surface opposite to the first surface, an active layer disposed between the first conductive semiconductor layer and the second conductive semiconductor layer, and a through hole disposed through the semiconductor stack. The semiconductor light emitting device further includes a contact layer connected to the first conductive semiconductor layer, disposed in the through hole, and disposed through the semiconductor stack, a first electrode layer connected to the contact layer, and a second electrode layer disposed on the second surface, and including a pad forming portion on which the semiconductor stack is not disposed. The semiconductor light emitting device further includes an insulating layer disposed between the first electrode layer and the second electrode layer, and an electrode pad disposed on the pad forming portion.
Abstract:
A wireless power transmission system based on cell division is provided. A communication and power control method of the wireless power transmission system, includes setting a magnetic coupling zone. The method further includes detecting a target device in the magnetic coupling zone. The method further includes transmitting a power to the target device. The method further includes adjusting an amount of the power based on a transmission efficiency of the power.
Abstract:
Provided are a wirelessly charged robot cleaner in a robot cleaning system and a controlling method thereof. The wirelessly charged robot may include a target resonator to receive a resonance power through energy-coupling with a source resonator of a wireless power transmitter, a wireless power receiving unit to convert the received resonance power into a rated voltage, and a battery controller to check a remaining capacity of the battery based on a scope of a predetermined area to be cleaned, and to charge, using the rated voltage, the battery based on the remaining capacity of the battery.
Abstract:
An overvoltage protecting unit and an overcurrent protecting unit protect a power device from an overvoltage and an overcurrent using a comparator having hysteresis. An overtemperature protecting unit protects the power device from an overtemperature using a thermistor having a resistance that changes as a temperature of the thermistor changes.
Abstract:
A wireless power relay apparatus includes a relay resonator configured to relay power from a source resonator configured to wirelessly transmit the power, to a target resonator configured to wirelessly receive the power through a mutual resonance, the relay resonator having a higher quality factor than the source resonator and the target resonator.